These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 30729390)

  • 1. The combined impact of tissue heterogeneity and fixed charge for models of cartilage: the one-dimensional biphasic swelling model revisited.
    Klika V; Whiteley JP; Brown CP; Gaffney EA
    Biomech Model Mechanobiol; 2019 Aug; 18(4):953-968. PubMed ID: 30729390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of the fixed negative charges on mechanical and electrical behaviors of articular cartilage under unconfined compression.
    Sun DD; Guo XE; Likhitpanichkul M; Lai WM; Mow VC
    J Biomech Eng; 2004 Feb; 126(1):6-16. PubMed ID: 15171124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling the inclusion of swelling pressure in a tissue level poroviscoelastic model of cartilage deformation.
    Whiteley JP; Gaffney EA
    Math Med Biol; 2020 Sep; 37(3):389-428. PubMed ID: 32072158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Importance of collagen orientation and depth-dependent fixed charge densities of cartilage on mechanical behavior of chondrocytes.
    Korhonen RK; Julkunen P; Wilson W; Herzog W
    J Biomech Eng; 2008 Apr; 130(2):021003. PubMed ID: 18412490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A triphasic theory for the swelling and deformation behaviors of articular cartilage.
    Lai WM; Hou JS; Mow VC
    J Biomech Eng; 1991 Aug; 113(3):245-58. PubMed ID: 1921350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A fibril-reinforced poroviscoelastic swelling model for articular cartilage.
    Wilson W; van Donkelaar CC; van Rietbergen B; Huiskes R
    J Biomech; 2005 Jun; 38(6):1195-204. PubMed ID: 15863103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental verification of the roles of intrinsic matrix viscoelasticity and tension-compression nonlinearity in the biphasic response of cartilage.
    Huang CY; Soltz MA; Kopacz M; Mow VC; Ateshian GA
    J Biomech Eng; 2003 Feb; 125(1):84-93. PubMed ID: 12661200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A microstructural model of elastostatic properties of articular cartilage in confined compression.
    Bursać P; McGrath CV; Eisenberg SR; Stamenović D
    J Biomech Eng; 2000 Aug; 122(4):347-53. PubMed ID: 11036557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A microstructural model for the anisotropic drained stiffness of articular cartilage.
    Farquhar T; Dawson PR; Torzilli PA
    J Biomech Eng; 1990 Nov; 112(4):414-25. PubMed ID: 2273868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predictive rheological models for the consolidation behaviour of articular cartilage under static loading.
    Nguyen T; Oloyede A
    Proc Inst Mech Eng H; 2001; 215(6):565-77. PubMed ID: 11848389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The biphasic poroviscoelastic behavior of articular cartilage: role of the surface zone in governing the compressive behavior.
    Setton LA; Zhu W; Mow VC
    J Biomech; 1993; 26(4-5):581-92. PubMed ID: 8478359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anisotropic hydraulic permeability in compressed articular cartilage.
    Reynaud B; Quinn TM
    J Biomech; 2006; 39(1):131-7. PubMed ID: 16271597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compressive stress relaxation behavior of articular cartilage and its effects on fluid pressure and solid displacement due to non-Newtonian flow.
    Farooq U; Siddique JI
    Comput Methods Biomech Biomed Engin; 2021 Feb; 24(2):161-172. PubMed ID: 33017177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of the superficial region in determining the dynamic properties of articular cartilage.
    Gannon AR; Nagel T; Kelly DJ
    Osteoarthritis Cartilage; 2012 Nov; 20(11):1417-25. PubMed ID: 22890186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of flow-independent viscoelasticity in the biphasic tensile and compressive responses of articular cartilage.
    Huang CY; Mow VC; Ateshian GA
    J Biomech Eng; 2001 Oct; 123(5):410-7. PubMed ID: 11601725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Depth-dependent analysis of the role of collagen fibrils, fixed charges and fluid in the pericellular matrix of articular cartilage on chondrocyte mechanics.
    Korhonen RK; Herzog W
    J Biomech; 2008; 41(2):480-5. PubMed ID: 17936762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glycosaminoglycan network geometry may contribute to anisotropic hydraulic permeability in cartilage under compression.
    Quinn TM; Dierickx P; Grodzinsky AJ
    J Biomech; 2001 Nov; 34(11):1483-90. PubMed ID: 11672723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The correspondence between equilibrium biphasic and triphasic material properties in mixture models of articular cartilage.
    Ateshian GA; Chahine NO; Basalo IM; Hung CT
    J Biomech; 2004 Mar; 37(3):391-400. PubMed ID: 14757459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anisotropic strain-dependent material properties of bovine articular cartilage in the transitional range from tension to compression.
    Chahine NO; Wang CC; Hung CT; Ateshian GA
    J Biomech; 2004 Aug; 37(8):1251-61. PubMed ID: 15212931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulating the swelling and deformation behaviour in soft tissues using a convective thermal analogy.
    Wu JZ; Herzog W
    Biomed Eng Online; 2002 Dec; 1():8. PubMed ID: 12685940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.