These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 30729466)

  • 1. The Ex Vivo Organ Culture of Bone.
    Staines KA; Brown G; Farquharson C
    Methods Mol Biol; 2019; 1914():199-215. PubMed ID: 30729466
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ex-Vivo Model Systems of Cancer-Bone Cell Interactions.
    Salih E
    Methods Mol Biol; 2019; 1914():217-240. PubMed ID: 30729467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intermittent compression stimulates cartilage mineralization.
    van't Veen SJ; Hagen JW; van Ginkel FC; Prahl-Andersen B; Burger EH
    Bone; 1995 Nov; 17(5):461-5. PubMed ID: 8579957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The skeleton: no bones about it.
    Farquharson C; Staines K
    J Endocrinol; 2011 Nov; 211(2):107-8. PubMed ID: 21784772
    [No Abstract]   [Full Text] [Related]  

  • 5. Methods to study cartilage and bone development.
    Andrade AC; Chrysis D; Audi L; Nilsson O
    Endocr Dev; 2011; 21():52-66. PubMed ID: 21865754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-term organ culture of embryonic chick femora: a system for investigating bone and cartilage formation at an intermediate level of organization.
    Roach HI
    J Bone Miner Res; 1990 Jan; 5(1):85-100. PubMed ID: 2309583
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of "matrigenin" activity from bovine bone on the glycosaminoglycans of bovine articular cartilage in culture. A model for cartilage repair by bone derived factors.
    Brown S; Irwin D; Anastassiades T
    J Rheumatol; 1989 Feb; 16(2):209-16. PubMed ID: 2545877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulatory mechanisms in the development of bone and cartilage: the use of tissue culture techniques in the study of the development of embryonic bone and cartilage: a perspective.
    Nijweide PJ; Burger EH; Hekkelman JW; Herrmann-Erlee MP; Gaillard PJ
    Prog Clin Biol Res; 1982; 101():457-80. PubMed ID: 7156153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Runx1/AML1 hematopoietic transcription factor contributes to skeletal development in vivo.
    Lian JB; Balint E; Javed A; Drissi H; Vitti R; Quinlan EJ; Zhang L; Van Wijnen AJ; Stein JL; Speck N; Stein GS
    J Cell Physiol; 2003 Aug; 196(2):301-11. PubMed ID: 12811823
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discovery and clinical applications of bone morphogenetic proteins.
    Vukicević S; Stavljenić A; Pećina M
    Eur J Clin Chem Clin Biochem; 1995 Oct; 33(10):661-71. PubMed ID: 8608185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parathyroid hormone stimulates bone formation and resorption in organ culture: evidence for a coupling mechanism.
    Howard GA; Bottemiller BL; Turner RT; Rader JI; Baylink DJ
    Proc Natl Acad Sci U S A; 1981 May; 78(5):3204-8. PubMed ID: 6942425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using Cell and Organ Culture Models to Analyze Responses of Bone Cells to Mechanical Stimulation.
    Caetano-Silva SP; Novicky A; Javaheri B; Rawlinson SCF; Pitsillides AA
    Methods Mol Biol; 2019; 1914():99-128. PubMed ID: 30729462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel bioactivity of phosvitin in connective tissue and bone organogenesis revealed by live calvarial bone organ culture models.
    Liu J; Czernick D; Lin SC; Alasmari A; Serge D; Salih E
    Dev Biol; 2013 Sep; 381(1):256-75. PubMed ID: 23791550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Utilization of microgravity bioreactors for differentiation of mammalian skeletal tissue.
    Klement BJ; Spooner BS
    J Cell Biochem; 1993 Mar; 51(3):252-6. PubMed ID: 8501126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel approach for studying the temporal modulation of embryonic skeletal development using organotypic bone cultures and microcomputed tomography.
    Kanczler JM; Smith EL; Roberts CA; Oreffo RO
    Tissue Eng Part C Methods; 2012 Oct; 18(10):747-60. PubMed ID: 22472170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Skeletal Cartilage and Bone Formation, Composition, and Function in Small Mammals, Birds, and Reptiles.
    Sabater González M
    Vet Clin North Am Exot Anim Pract; 2019 May; 22(2):123-134. PubMed ID: 30872001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chronobiology of endochondral ossification.
    Simmons DJ
    Chronobiologia; 1974; 1(1):97-109. PubMed ID: 4459048
    [No Abstract]   [Full Text] [Related]  

  • 18. Growth and remodeling of bone and bones. Role of genetics and function.
    Storey E
    Dent Clin North Am; 1975 Jul; 19(3):443-55. PubMed ID: 1055699
    [No Abstract]   [Full Text] [Related]  

  • 19. Role of transforming growth factor-beta in fracture repair.
    Joyce ME; Terek RM; Jingushi S; Bolander ME
    Ann N Y Acad Sci; 1990; 593():107-23. PubMed ID: 2197959
    [No Abstract]   [Full Text] [Related]  

  • 20. Zetos: a culture loading system for trabecular bone. Investigation of different loading signal intensities on bovine bone cylinders.
    Endres S; Kratz M; Wunsch S; Jones DB
    J Musculoskelet Neuronal Interact; 2009; 9(3):173-83. PubMed ID: 19724152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.