These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 30729478)

  • 1. In Vivo Models of Mechanical Loading.
    Javaheri B; Bravenboer N; Bakker AD; van der Veen A; de Souza RL; Saxon L; Pitsillides AA
    Methods Mol Biol; 2019; 1914():369-390. PubMed ID: 30729478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo mechanical loading.
    de Souza RL; Saxon L
    Methods Mol Biol; 2012; 816():621-36. PubMed ID: 22130955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional adaptation to mechanical loading in both cortical and cancellous bone is controlled locally and is confined to the loaded bones.
    Sugiyama T; Price JS; Lanyon LE
    Bone; 2010 Feb; 46(2):314-21. PubMed ID: 19733269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Risedronate does not reduce mechanical loading-related increases in cortical and trabecular bone mass in mice.
    Sugiyama T; Meakin LB; Galea GL; Jackson BF; Lanyon LE; Ebetino FH; Russell RG; Price JS
    Bone; 2011 Jul; 49(1):133-9. PubMed ID: 21497678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Developments of the theory of skeletal adaptation to mechanical loading].
    Xie LQ; Liu CL
    Space Med Med Eng (Beijing); 1999 Jun; 12(3):226-30. PubMed ID: 11766714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-invasive axial loading of mouse tibiae increases cortical bone formation and modifies trabecular organization: a new model to study cortical and cancellous compartments in a single loaded element.
    De Souza RL; Matsuura M; Eckstein F; Rawlinson SC; Lanyon LE; Pitsillides AA
    Bone; 2005 Dec; 37(6):810-8. PubMed ID: 16198164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tomography-Based Quantification of Regional Differences in Cortical Bone Surface Remodeling and Mechano-Response.
    Birkhold AI; Razi H; Duda GN; Checa S; Willie BM
    Calcif Tissue Int; 2017 Mar; 100(3):255-270. PubMed ID: 27999894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical effects on the skeleton: are there clinical implications?
    Forwood MR
    Osteoporos Int; 2001; 12(1):77-83. PubMed ID: 11305087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial and temporal regulation of cancellous bone structure: characterization of a rate equation of trabecular surface remodeling.
    Tsubota K; Adachi T
    Med Eng Phys; 2005 May; 27(4):305-11. PubMed ID: 15823471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical Regulation of the Maternal Skeleton during Reproduction and Lactation.
    Liu XS; Wang L; de Bakker CMJ; Lai X
    Curr Osteoporos Rep; 2019 Dec; 17(6):375-386. PubMed ID: 31755029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of calcitonin gene-related peptide in functional adaptation of the skeleton.
    Sample SJ; Heaton CM; Behan M; Bleedorn JA; Racette MA; Hao Z; Muir P
    PLoS One; 2014; 9(12):e113959. PubMed ID: 25536054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of microstructural and mechanical alterations of trabecular bone in a simulated three-dimensional remodeling process.
    Wang H; Ji B; Liu XS; Guo XE; Huang Y; Hwang KC
    J Biomech; 2012 Sep; 45(14):2417-25. PubMed ID: 22867764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Additional weight bearing during exercise and estrogen in the rat: the effect on bone mass, turnover, and structure.
    Tromp AM; Bravenboer N; Tanck E; Oostlander A; Holzmann PJ; Kostense PJ; Roos JC; Burger EH; Huiskes R; Lips P
    Calcif Tissue Int; 2006 Dec; 79(6):404-15. PubMed ID: 17160577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diminished response to in vivo mechanical loading in trabecular and not cortical bone in adulthood of female C57Bl/6 mice coincides with a reduction in deformation to load.
    Willie BM; Birkhold AI; Razi H; Thiele T; Aido M; Kruck B; Schill A; Checa S; Main RP; Duda GN
    Bone; 2013 Aug; 55(2):335-46. PubMed ID: 23643681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of the in vivo adaptive response to mechanical loading.
    Saxon LK; Lanyon LE
    Methods Mol Biol; 2008; 455():307-22. PubMed ID: 18463827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental and finite element analysis of the mouse caudal vertebrae loading model: prediction of cortical and trabecular bone adaptation.
    Webster D; Wirth A; van Lenthe GH; Müller R
    Biomech Model Mechanobiol; 2012 Jan; 11(1-2):221-30. PubMed ID: 21472383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The success and failure of the adaptive response to functional load-bearing in averting bone fracture.
    Lanyon LE
    Bone; 1992; 13 Suppl 2():S17-21. PubMed ID: 1627409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Muscle force regulates bone shaping for optimal load-bearing capacity during embryogenesis.
    Sharir A; Stern T; Rot C; Shahar R; Zelzer E
    Development; 2011 Aug; 138(15):3247-59. PubMed ID: 21750035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tibial compression is anabolic in the adult mouse skeleton despite reduced responsiveness with aging.
    Lynch ME; Main RP; Xu Q; Schmicker TL; Schaffler MB; Wright TM; van der Meulen MC
    Bone; 2011 Sep; 49(3):439-46. PubMed ID: 21642027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantification of a rat tail vertebra model for trabecular bone adaptation studies.
    Guo XE; Eichler MJ; Takai E; Kim CH
    J Biomech; 2002 Mar; 35(3):363-8. PubMed ID: 11858812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.