These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 30729632)
1. Direct Observation of a Li-Ionic Space-Charge Layer Formed at an Electrode/Solid-Electrolyte Interface. Nomura Y; Yamamoto K; Hirayama T; Ouchi S; Igaki E; Saitoh K Angew Chem Int Ed Engl; 2019 Apr; 58(16):5292-5296. PubMed ID: 30729632 [TBL] [Abstract][Full Text] [Related]
2. Dynamical observation of lithium insertion/extraction reaction during charge-discharge processes in Li-ion batteries by in situ spatially resolved electron energy-loss spectroscopy. Shimoyamada A; Yamamoto K; Yoshida R; Kato T; Iriyama Y; Hirayama T Microscopy (Oxf); 2015 Dec; 64(6):401-8. PubMed ID: 26337787 [TBL] [Abstract][Full Text] [Related]
3. Operando observations of solid-state electrochemical reactions in Li-ion batteries by spatially resolved TEM EELS and electron holography. Yamamoto K; Iriyama Y; Hirayama T Microscopy (Oxf); 2017 Feb; 66(1):50-61. PubMed ID: 27733434 [TBL] [Abstract][Full Text] [Related]
4. The Li-ion rechargeable battery: a perspective. Goodenough JB; Park KS J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028 [TBL] [Abstract][Full Text] [Related]
5. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes. Yu X; Manthiram A Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389 [TBL] [Abstract][Full Text] [Related]
6. Space-Charge Layers in All-Solid-State Batteries; Important or Negligible? de Klerk NJJ; Wagemaker M ACS Appl Energy Mater; 2018 Oct; 1(10):5609-5618. PubMed ID: 30406216 [TBL] [Abstract][Full Text] [Related]
7. Computational Exploration of the Li-Electrode|Electrolyte Interface in the Presence of a Nanometer Thick Solid-Electrolyte Interphase Layer. Li Y; Leung K; Qi Y Acc Chem Res; 2016 Oct; 49(10):2363-2370. PubMed ID: 27689438 [TBL] [Abstract][Full Text] [Related]
8. Extremely Low Resistance of Li Kawasoko H; Shiraki S; Suzuki T; Shimizu R; Hitosugi T ACS Appl Mater Interfaces; 2018 Aug; 10(32):27498-27502. PubMed ID: 29989389 [TBL] [Abstract][Full Text] [Related]
9. Quantitative Operando Visualization of Electrochemical Reactions and Li Ions in All-Solid-State Batteries by STEM-EELS with Hyperspectral Image Analyses. Nomura Y; Yamamoto K; Hirayama T; Ohkawa M; Igaki E; Hojo N; Saitoh K Nano Lett; 2018 Sep; 18(9):5892-5898. PubMed ID: 30130410 [TBL] [Abstract][Full Text] [Related]
10. Stabilizing the Interface of NASICON Solid Electrolyte against Li Metal with Atomic Layer Deposition. Liu Y; Sun Q; Zhao Y; Wang B; Kaghazchi P; Adair KR; Li R; Zhang C; Liu J; Kuo LY; Hu Y; Sham TK; Zhang L; Yang R; Lu S; Song X; Sun X ACS Appl Mater Interfaces; 2018 Sep; 10(37):31240-31248. PubMed ID: 30141900 [TBL] [Abstract][Full Text] [Related]
11. Space-Charge Effects at the Li Brogioli D; Langer F; Kun R; La Mantia F ACS Appl Mater Interfaces; 2019 Mar; 11(12):11999-12007. PubMed ID: 30821956 [TBL] [Abstract][Full Text] [Related]
12. In-situ visualization of the space-charge-layer effect on interfacial lithium-ion transport in all-solid-state batteries. Wang L; Xie R; Chen B; Yu X; Ma J; Li C; Hu Z; Sun X; Xu C; Dong S; Chan TS; Luo J; Cui G; Chen L Nat Commun; 2020 Nov; 11(1):5889. PubMed ID: 33208730 [TBL] [Abstract][Full Text] [Related]
13. Stable Cycling Lithium-Sulfur Solid Batteries with Enhanced Li/Li Umeshbabu E; Zheng B; Zhu J; Wang H; Li Y; Yang Y ACS Appl Mater Interfaces; 2019 May; 11(20):18436-18447. PubMed ID: 31033273 [TBL] [Abstract][Full Text] [Related]
14. Variable-Energy Hard X-ray Photoemission Spectroscopy: A Nondestructive Tool to Analyze the Cathode-Solid-State Electrolyte Interface. Liu Y; Sun Q; Liu J; Norouzi Banis M; Zhao Y; Wang B; Adair K; Hu Y; Xiao Q; Zhang C; Zhang L; Lu S; Huang H; Song X; Sun X ACS Appl Mater Interfaces; 2020 Jan; 12(2):2293-2298. PubMed ID: 31859469 [TBL] [Abstract][Full Text] [Related]
15. Design of Nanostructured Heterogeneous Solid Ionic Coatings through a Multiscale Defect Model. Pan J; Zhang Q; Xiao X; Cheng YT; Qi Y ACS Appl Mater Interfaces; 2016 Mar; 8(8):5687-93. PubMed ID: 26852871 [TBL] [Abstract][Full Text] [Related]
16. Direct visualization of solid electrolyte interphase formation in lithium-ion batteries with in situ electrochemical transmission electron microscopy. Unocic RR; Sun XG; Sacci RL; Adamczyk LA; Alsem DH; Dai S; Dudney NJ; More KL Microsc Microanal; 2014 Aug; 20(4):1029-37. PubMed ID: 24994021 [TBL] [Abstract][Full Text] [Related]
17. Characterization and Quantification of Depletion and Accumulation Layers in Solid-State Li Katzenmeier L; Carstensen L; Schaper SJ; Müller-Buschbaum P; Bandarenka AS Adv Mater; 2021 Jun; 33(24):e2100585. PubMed ID: 33955614 [TBL] [Abstract][Full Text] [Related]
18. Study of surface reaction of spinel Li4Ti5O12 during the first lithium insertion and extraction processes using atomic force microscopy and analytical transmission electron microscopy. Kitta M; Akita T; Maeda Y; Kohyama M Langmuir; 2012 Aug; 28(33):12384-92. PubMed ID: 22839691 [TBL] [Abstract][Full Text] [Related]
19. The stability of the SEI layer, surface composition and the oxidation state of transition metals at the electrolyte-cathode interface impacted by the electrochemical cycling: X-ray photoelectron spectroscopy investigation. Cherkashinin G; Nikolowski K; Ehrenberg H; Jacke S; Dimesso L; Jaegermann W Phys Chem Chem Phys; 2012 Sep; 14(35):12321-31. PubMed ID: 22858824 [TBL] [Abstract][Full Text] [Related]
20. Nontraditional, Safe, High Voltage Rechargeable Cells of Long Cycle Life. Braga MH; M Subramaniyam C; Murchison AJ; Goodenough JB J Am Chem Soc; 2018 May; 140(20):6343-6352. PubMed ID: 29688709 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]