These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 30729836)

  • 1. Differential transformation and antibacterial effects of silver nanoparticles in aerobic and anaerobic environment.
    Dong F; Zhou Y
    Nanotoxicology; 2019 Apr; 13(3):339-353. PubMed ID: 30729836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aerobic condition enhances bacteriostatic effects of silver nanoparticles in aquatic environment: an antimicrobial study on Pseudomonas aeruginosa.
    Chen Z; Yang P; Yuan Z; Guo J
    Sci Rep; 2017 Aug; 7(1):7398. PubMed ID: 28785059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stability and Microbial Toxicity of Silver Nanoparticles under Denitrifying Conditions.
    Rajendran RK; Lin CC
    ACS Appl Mater Interfaces; 2021 Oct; 13(39):46233-46246. PubMed ID: 34547889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions.
    Xiu ZM; Ma J; Alvarez PJ
    Environ Sci Technol; 2011 Oct; 45(20):9003-8. PubMed ID: 21950450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antibacterial Effects of Biosynthesized Silver Nanoparticles on Surface Ultrastructure and Nanomechanical Properties of Gram-Negative Bacteria viz. Escherichia coli and Pseudomonas aeruginosa.
    Ramalingam B; Parandhaman T; Das SK
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):4963-76. PubMed ID: 26829373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of biosurfactant stabilized silver nanoparticles, characterization and their potential application for bactericidal purposes.
    Bezza FA; Tichapondwa SM; Chirwa EMN
    J Hazard Mater; 2020 Jul; 393():122319. PubMed ID: 32120206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antibacterial activity and mechanism of silver nanoparticles against multidrug-resistant
    Liao S; Zhang Y; Pan X; Zhu F; Jiang C; Liu Q; Cheng Z; Dai G; Wu G; Wang L; Chen L
    Int J Nanomedicine; 2019; 14():1469-1487. PubMed ID: 30880959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Silver Nanoparticles on Multiple Drug-Resistant Strains of Staphylococcus aureus and Pseudomonas aeruginosa from Mastitis-Infected Goats: An Alternative Approach for Antimicrobial Therapy.
    Yuan YG; Peng QL; Gurunathan S
    Int J Mol Sci; 2017 Mar; 18(3):. PubMed ID: 28272303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Particle-cell contact enhances antibacterial activity of silver nanoparticles.
    Bondarenko O; Ivask A; Käkinen A; Kurvet I; Kahru A
    PLoS One; 2013; 8(5):e64060. PubMed ID: 23737965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biological synthesis of silver nanoparticles using β-1, 3 glucan binding protein and their antibacterial, antibiofilm and cytotoxic potential.
    Anjugam M; Vaseeharan B; Iswarya A; Divya M; Prabhu NM; Sankaranarayanan K
    Microb Pathog; 2018 Feb; 115():31-40. PubMed ID: 29208541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tannic acid-mediated green synthesis of antibacterial silver nanoparticles.
    Kim TY; Cha SH; Cho S; Park Y
    Arch Pharm Res; 2016 Apr; 39(4):465-473. PubMed ID: 26895244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Negligible particle-specific antibacterial activity of silver nanoparticles.
    Xiu ZM; Zhang QB; Puppala HL; Colvin VL; Alvarez PJ
    Nano Lett; 2012 Aug; 12(8):4271-5. PubMed ID: 22765771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-resolved toxicity study reveals the dynamic interactions between uncoated silver nanoparticles and bacteria.
    Dong F; Mohd Zaidi NF; Valsami-Jones E; Kreft JU
    Nanotoxicology; 2017 Jun; 11(5):637-646. PubMed ID: 28608745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Green and ecofriendly synthesis of silver nanoparticles: Characterization, biocompatibility studies and gel formulation for treatment of infections in burns.
    Jadhav K; Dhamecha D; Bhattacharya D; Patil M
    J Photochem Photobiol B; 2016 Feb; 155():109-15. PubMed ID: 26774382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced stability and antibacterial efficacy of a traditional Chinese medicine-mediated silver nanoparticle delivery system.
    Sun W; Qu D; Ma Y; Chen Y; Liu C; Zhou J
    Int J Nanomedicine; 2014; 9():5491-502. PubMed ID: 25473286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced formation of silver nanoparticles in Ag+-NOM-iron(II, III) systems and antibacterial activity studies.
    Adegboyega NF; Sharma VK; Siskova KM; Vecerova R; Kolar M; Zbořil R; Gardea-Torresdey JL
    Environ Sci Technol; 2014 Mar; 48(6):3228-35. PubMed ID: 24524189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trimethyl chitosan-capped silver nanoparticles with positive surface charge: Their catalytic activity and antibacterial spectrum including multidrug-resistant strains of Acinetobacter baumannii.
    Chang TY; Chen CC; Cheng KM; Chin CY; Chen YH; Chen XA; Sun JR; Young JJ; Chiueh TS
    Colloids Surf B Biointerfaces; 2017 Jul; 155():61-70. PubMed ID: 28411476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of bacterial surface colonization by immobilized silver nanoparticles depends critically on the planktonic bacterial concentration.
    Wirth SM; Bertuccio AJ; Cao F; Lowry GV; Tilton RD
    J Colloid Interface Sci; 2016 Apr; 467():17-27. PubMed ID: 26771749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-defense mechanisms of microorganisms from the antimicrobial effect of silver nanoparticles: Highlight the role of extracellular polymeric substances.
    Yang Y; Chen X; Zhang N; Sun B; Wang K; Zhang Y; Zhu L
    Water Res; 2022 Jun; 218():118452. PubMed ID: 35447420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polysaccharide-based silver nanoparticles synthesized by Klebsiella oxytoca DSM 29614 cause DNA fragmentation in E. coli cells.
    Baldi F; Daniele S; Gallo M; Paganelli S; Battistel D; Piccolo O; Faleri C; Puglia AM; Gallo G
    Biometals; 2016 Apr; 29(2):321-31. PubMed ID: 26886276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.