These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 30729970)

  • 21. Heterodimeric Plasmonic Nanogaps for Biosensing.
    Chatterjee S; Ricciardi L; Deitz JI; Williams REA; McComb DW; Strangi G
    Micromachines (Basel); 2018 Dec; 9(12):. PubMed ID: 30558364
    [TBL] [Abstract][Full Text] [Related]  

  • 22. One-step fabrication of sub-10-nm plasmonic nanogaps for reliable SERS sensing of microorganisms.
    Chen J; Qin G; Wang J; Yu J; Shen B; Li S; Ren Y; Zuo L; Shen W; Das B
    Biosens Bioelectron; 2013 Jun; 44():191-7. PubMed ID: 23428732
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electron Transport Across Plasmonic Molecular Nanogaps Interrogated with Surface-Enhanced Raman Scattering.
    Lin L; Zhang Q; Li X; Qiu M; Jiang X; Jin W; Gu H; Lei DY; Ye J
    ACS Nano; 2018 Jul; 12(7):6492-6503. PubMed ID: 29924592
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Atomic layer deposition assisted fabrication of large-scale metal nanogaps for surface enhanced Raman scattering.
    Cheng T; Zhu Z; Wang X; Zhu L; Li A; Jiang L; Cao Y
    Nanotechnology; 2023 Apr; 34(26):. PubMed ID: 36996801
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Suspended 3D metallic dimers with sub-10 nm gap for high-sensitive SERS detection.
    Zeng P; Zhou Y; Shu Z; Liang H; Zhang X; Chen Y; Duan H; Zheng M
    Nanotechnology; 2022 Dec; 34(9):. PubMed ID: 36384034
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of the tip shape on the localized field enhancement and far field radiation pattern of the plasmonic inverted pyramidal nanostructures with the tips for surface-enhanced Raman scattering.
    Cheng HH; Chen SW; Chang YY; Chu JY; Lin DZ; Chen YP; Li JH
    Opt Express; 2011 Oct; 19(22):22125-41. PubMed ID: 22109056
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-Throughput Fabrication of Triangular Nanogap Arrays for Surface-Enhanced Raman Spectroscopy.
    Luo S; Mancini A; Wang F; Liu J; Maier SA; de Mello JC
    ACS Nano; 2022 May; 16(5):7438-7447. PubMed ID: 35381178
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Particle-in-a-Frame Nanostructures with Interior Nanogaps.
    Lee S; Kim J; Yang H; Cortés E; Kang S; Han SW
    Angew Chem Int Ed Engl; 2019 Oct; 58(44):15890-15894. PubMed ID: 31482631
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Plasmon-Driven Dynamic Response of a Hierarchically Structural Silver-Decorated Nanorod Array for Sub-10 nm Nanogaps.
    Wang Y; Wang H; Wang Y; Shen Y; Xu S; Xu W
    ACS Appl Mater Interfaces; 2016 Jun; 8(24):15623-9. PubMed ID: 27250862
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Large area metal nanowire arrays with tunable sub-20 nm nanogaps.
    Le Thi Ngoc L; Jin M; Wiedemair J; van den Berg A; Carlen ET
    ACS Nano; 2013 Jun; 7(6):5223-34. PubMed ID: 23647306
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Massively Parallel Arrays of Size-Controlled Metallic Nanogaps with Gap-Widths Down to the Sub-3-nm Level.
    Luo S; Mancini A; Berté R; Hoff BH; Maier SA; de Mello JC
    Adv Mater; 2021 May; 33(20):e2100491. PubMed ID: 33939199
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Highly Sensitive and Selective Nanogap-Enhanced SERS Sensing Platform.
    Mun C; Linh VTN; Kwon JD; Jung HS; Kim DH; Park SG
    Nanomaterials (Basel); 2019 Apr; 9(4):. PubMed ID: 30995760
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis, Assembly, Optical Properties, and Sensing Applications of Plasmonic Gap Nanostructures.
    Kim JM; Lee C; Lee Y; Lee J; Park SJ; Park S; Nam JM
    Adv Mater; 2021 Nov; 33(46):e2006966. PubMed ID: 34013617
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Field-enhanced nanofocusing of radially polarized light by a tapered hybrid plasmonic waveguide with periodic grooves.
    Xu J; Li K; Zhang S; Lu X; Shi N; Tan Z; Lu Y; Liu N; Zhang B; Liang Z
    Appl Opt; 2019 Jan; 58(3):588-592. PubMed ID: 30694249
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Light on the Tip of a Needle: Plasmonic Nanofocusing for Spectroscopy on the Nanoscale.
    Berweger S; Atkin JM; Olmon RL; Raschke MB
    J Phys Chem Lett; 2012 Apr; 3(7):945-52. PubMed ID: 26286425
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Wafer scale fabrication of highly dense and uniform array of sub-5 nm nanogaps for surface enhanced Raman scatting substrates.
    Cai H; Wu Y; Dai Y; Pan N; Tian Y; Luo Y; Wang X
    Opt Express; 2016 Sep; 24(18):20808-15. PubMed ID: 27607684
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fabricating nanogaps by nanoskiving.
    Pourhossein P; Chiechi RC
    J Vis Exp; 2013 May; (75):e50406. PubMed ID: 23711512
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Using the thickness of graphene to template lateral subnanometer gaps between gold nanostructures.
    Zaretski AV; Marin BC; Moetazedi H; Dill TJ; Jibril L; Kong C; Tao AR; Lipomi DJ
    Nano Lett; 2015 Jan; 15(1):635-40. PubMed ID: 25555061
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Self-Assembled 3D Nanosplit Rings for Plasmon-Enhanced Optofluidic Sensing.
    Dai C; Lin Z; Agarwal K; Mikhael C; Aich A; Gupta K; Cho JH
    Nano Lett; 2020 Sep; 20(9):6697-6705. PubMed ID: 32808792
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Directly addressable sub-3 nm gold nanogaps fabricated by Nanoskiving using self-assembled monolayers as templates.
    Pourhossein P; Chiechi RC
    ACS Nano; 2012 Jun; 6(6):5566-73. PubMed ID: 22577867
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.