These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 30730133)

  • 1. Graphene-Based Steganographically Aptasensing System for Information Computing, Encryption and Hiding, Fluorescence Sensing and in Vivo Imaging of Fish Pathogens.
    Zhu QY; Zhang FR; Du Y; Zhang XX; Lu JY; Yao QF; Huang WT; Ding XZ; Xia LQ
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):8904-8914. PubMed ID: 30730133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular 'email': Electrochemical aptasensing of fish pathogens, molecular information encoding, encryption and hiding applications.
    Lu JY; Jiang Q; Lei JJ; He YX; Huang WT
    Anal Chim Acta; 2022 Nov; 1232():340483. PubMed ID: 36257750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graphene-Based Steganographic Aptasensor for Information Computing and Monitoring Toxins of Biofilm in Food.
    Wang Q; Yang Q; Wu W
    Front Microbiol; 2019; 10():3139. PubMed ID: 32117086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescent aptasensor based on aggregation-induced emission probe and graphene oxide.
    Li X; Ma K; Zhu S; Yao S; Liu Z; Xu B; Yang B; Tian W
    Anal Chem; 2014 Jan; 86(1):298-303. PubMed ID: 24299305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene-based aptasensors: from molecule-interface interactions to sensor design and biomedical diagnostics.
    Wang L; Wu A; Wei G
    Analyst; 2018 Mar; 143(7):1526-1543. PubMed ID: 29528071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent advances in aptasensors based on graphene and graphene-like nanomaterials.
    Ping J; Zhou Y; Wu Y; Papper V; Boujday S; Marks RS; Steele TW
    Biosens Bioelectron; 2015 Feb; 64():373-85. PubMed ID: 25261843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A general strategy to create RNA aptamer sensors using "regulated" graphene oxide adsorption.
    Song J; Lau PS; Liu M; Shuang S; Dong C; Li Y
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):21806-12. PubMed ID: 24992732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Matter, energy and information network of a graphene-peptide-based fluorescent sensing system for molecular logic computing, detection and imaging of cancer stem cell marker CD133 in cells and tumor tissues.
    Zhang FR; Lu JY; Yao QF; Zhu QY; Zhang XX; Huang WT; Xia LQ; Ding XZ
    Analyst; 2019 Mar; 144(6):1881-1891. PubMed ID: 30785136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene-based aptamer logic gates and their application to multiplex detection.
    Wang L; Zhu J; Han L; Jin L; Zhu C; Wang E; Dong S
    ACS Nano; 2012 Aug; 6(8):6659-66. PubMed ID: 22823159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly tunable aptasensing microarrays with graphene oxide multilayers.
    Jung YK; Lee T; Shin E; Kim BS
    Sci Rep; 2013 Nov; 3():3367. PubMed ID: 24284474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiplexed aptasensors and amplified DNA sensors using functionalized graphene oxide: application for logic gate operations.
    Liu X; Aizen R; Freeman R; Yehezkeli O; Willner I
    ACS Nano; 2012 Apr; 6(4):3553-63. PubMed ID: 22404375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical Graphene-Based Biosensor for Nucleic Acid Detection; Influence of Graphene Functionalization and Ionic Strength.
    Becheru DF; Vlăsceanu GM; Banciu A; Vasile E; Ioniţă M; Burns JS
    Int J Mol Sci; 2018 Oct; 19(10):. PubMed ID: 30347651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An efficient fluorescence resonance energy transfer system from quantum dots to graphene oxide nano sheets: Application in a photoluminescence aptasensing probe for the sensitive detection of diazinon.
    Arvand M; Mirroshandel AA
    Food Chem; 2019 May; 280():115-122. PubMed ID: 30642476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Homogeneous electrochemical detection of ochratoxin A in foodstuff using aptamer-graphene oxide nanosheets and DNase I-based target recycling reaction.
    Sun AL; Zhang YF; Sun GP; Wang XN; Tang D
    Biosens Bioelectron; 2017 Mar; 89(Pt 1):659-665. PubMed ID: 26707001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thrombin aptasensing with inherently electroactive graphene oxide nanoplatelets as labels.
    Loo AH; Bonanni A; Pumera M
    Nanoscale; 2013 Jun; 5(11):4758-62. PubMed ID: 23604556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Graphene-Based Biosensing Platform Based on Regulated Release of an Aptameric DNA Biosensor.
    Mao Y; Chen Y; Li S; Lin S; Jiang Y
    Sensors (Basel); 2015 Nov; 15(11):28244-56. PubMed ID: 26569239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Label-free bioassay with graphene oxide-based fluorescent aptasensors: A review.
    Ma K; Li X; Xu B; Tian W
    Anal Chim Acta; 2021 Dec; 1188():338859. PubMed ID: 34794573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiplexed fluorescence resonance energy transfer aptasensor between upconversion nanoparticles and graphene oxide for the simultaneous determination of mycotoxins.
    Wu S; Duan N; Ma X; Xia Y; Wang H; Wang Z; Zhang Q
    Anal Chem; 2012 Jul; 84(14):6263-70. PubMed ID: 22816786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A highly sensitive label-free electrochemical aptasensor for interferon-gamma detection based on graphene controlled assembly and nuclease cleavage-assisted target recycling amplification.
    Yan G; Wang Y; He X; Wang K; Liu J; Du Y
    Biosens Bioelectron; 2013 Jun; 44():57-63. PubMed ID: 23391707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A graphene-based biosensing platform based on the release of DNA probes and rolling circle amplification.
    Liu M; Song J; Shuang S; Dong C; Brennan JD; Li Y
    ACS Nano; 2014 Jun; 8(6):5564-73. PubMed ID: 24857187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.