These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 30730297)
1. Applying Multivariate Segmentation Methods to Human Activity Recognition From Wearable Sensors' Data. Li K; Habre R; Deng H; Urman R; Morrison J; Gilliland FD; Ambite JL; Stripelis D; Chiang YY; Lin Y; Bui AA; King C; Hosseini A; Vliet EV; Sarrafzadeh M; Eckel SP JMIR Mhealth Uhealth; 2019 Feb; 7(2):e11201. PubMed ID: 30730297 [TBL] [Abstract][Full Text] [Related]
2. Accuracy of Samsung Gear S Smartwatch for Activity Recognition: Validation Study. Davoudi A; Wanigatunga AA; Kheirkhahan M; Corbett DB; Mendoza T; Battula M; Ranka S; Fillingim RB; Manini TM; Rashidi P JMIR Mhealth Uhealth; 2019 Feb; 7(2):e11270. PubMed ID: 30724739 [TBL] [Abstract][Full Text] [Related]
3. Development and validation of smartwatch-based activity recognition models for rigging crew workers on cable logging operations. Zimbelman EG; Keefe RF PLoS One; 2021; 16(5):e0250624. PubMed ID: 33979355 [TBL] [Abstract][Full Text] [Related]
4. w-HAR: An Activity Recognition Dataset and Framework Using Low-Power Wearable Devices. Bhat G; Tran N; Shill H; Ogras UY Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32962046 [TBL] [Abstract][Full Text] [Related]
5. A Framework for Maternal Physical Activities and Health Monitoring Using Wearable Sensors. Ullah F; Iqbal A; Iqbal S; Kwak D; Anwar H; Khan A; Ullah R; Siddique H; Kwak KS Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372186 [TBL] [Abstract][Full Text] [Related]
6. Human activity recognition of children with wearable devices using LightGBM machine learning. Csizmadia G; Liszkai-Peres K; Ferdinandy B; Miklósi Á; Konok V Sci Rep; 2022 Mar; 12(1):5472. PubMed ID: 35361854 [TBL] [Abstract][Full Text] [Related]
7. Ensemble machine learning model trained on a new synthesized dataset generalizes well for stress prediction using wearable devices. Vos G; Trinh K; Sarnyai Z; Rahimi Azghadi M J Biomed Inform; 2023 Dec; 148():104556. PubMed ID: 38048895 [TBL] [Abstract][Full Text] [Related]
8. Effects of sliding window variation in the performance of acceleration-based human activity recognition using deep learning models. Jaén-Vargas M; Reyes Leiva KM; Fernandes F; Barroso Gonçalves S; Tavares Silva M; Lopes DS; Serrano Olmedo JJ PeerJ Comput Sci; 2022; 8():e1052. PubMed ID: 36091986 [TBL] [Abstract][Full Text] [Related]
9. A Wearable Inertial Sensor Approach for Locomotion and Localization Recognition on Physical Activity. Khan D; Al Mudawi N; Abdelhaq M; Alazeb A; Alotaibi SS; Algarni A; Jalal A Sensors (Basel); 2024 Jan; 24(3):. PubMed ID: 38339452 [TBL] [Abstract][Full Text] [Related]
10. Recognizing Physical Activities for Spinal Cord Injury Rehabilitation Using Wearable Sensors. Alhammad N; Al-Dossari H Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450921 [TBL] [Abstract][Full Text] [Related]
11. Classifying running speed conditions using a single wearable sensor: Optimal segmentation and feature extraction methods. Benson LC; Clermont CA; Osis ST; Kobsar D; Ferber R J Biomech; 2018 Apr; 71():94-99. PubMed ID: 29454542 [TBL] [Abstract][Full Text] [Related]
12. Effect of handling breaks on estimation of heart rate responses to bouts of physical activity among young women: An accelerometer research issue. Ayabe M; Kumahara H Gait Posture; 2020 Sep; 81():1-6. PubMed ID: 32645577 [TBL] [Abstract][Full Text] [Related]
13. Wearable Sensors Reveal Menses-Driven Changes in Physiology and Enable Prediction of the Fertile Window: Observational Study. Goodale BM; Shilaih M; Falco L; Dammeier F; Hamvas G; Leeners B J Med Internet Res; 2019 Apr; 21(4):e13404. PubMed ID: 30998226 [TBL] [Abstract][Full Text] [Related]
14. Physical Activity Recognition Based on a Parallel Approach for an Ensemble of Machine Learning and Deep Learning Classifiers. Abid M; Khabou A; Ouakrim Y; Watel H; Chemcki S; Mitiche A; Benazza-Benyahia A; Mezghani N Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300453 [TBL] [Abstract][Full Text] [Related]
15. Development and Clinical Evaluation of a Web-Based Upper Limb Home Rehabilitation System Using a Smartwatch and Machine Learning Model for Chronic Stroke Survivors: Prospective Comparative Study. Chae SH; Kim Y; Lee KS; Park HS JMIR Mhealth Uhealth; 2020 Jul; 8(7):e17216. PubMed ID: 32480361 [TBL] [Abstract][Full Text] [Related]
16. Cross-validation and out-of-sample testing of physical activity intensity predictions with a wrist-worn accelerometer. Montoye AHK; Westgate BS; Fonley MR; Pfeiffer KA J Appl Physiol (1985); 2018 May; 124(5):1284-1293. PubMed ID: 29369742 [TBL] [Abstract][Full Text] [Related]
17. The Effect of Sensor Placement and Number on Physical Activity Recognition and Energy Expenditure Estimation in Older Adults: Validation Study. Davoudi A; Mardini MT; Nelson D; Albinali F; Ranka S; Rashidi P; Manini TM JMIR Mhealth Uhealth; 2021 May; 9(5):e23681. PubMed ID: 33938809 [TBL] [Abstract][Full Text] [Related]
18. Depression Prediction by Using Ecological Momentary Assessment, Actiwatch Data, and Machine Learning: Observational Study on Older Adults Living Alone. Kim H; Lee S; Lee S; Hong S; Kang H; Kim N JMIR Mhealth Uhealth; 2019 Oct; 7(10):e14149. PubMed ID: 31621642 [TBL] [Abstract][Full Text] [Related]
19. Complex Human Activity Recognition Using Smartphone and Wrist-Worn Motion Sensors. Shoaib M; Bosch S; Incel OD; Scholten H; Havinga PJ Sensors (Basel); 2016 Mar; 16(4):426. PubMed ID: 27023543 [TBL] [Abstract][Full Text] [Related]
20. AccNet24: A deep learning framework for classifying 24-hour activity behaviours from wrist-worn accelerometer data under free-living environments. Farrahi V; Muhammad U; Rostami M; Oussalah M Int J Med Inform; 2023 Apr; 172():105004. PubMed ID: 36724729 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]