These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 30730297)

  • 21. A catalog of validity indices for step counting wearable technologies during treadmill walking: the CADENCE-Kids study.
    Gould ZR; Mora-Gonzalez J; Aguiar EJ; Schuna JM; Barreira TV; Moore CC; Staudenmayer J; Tudor-Locke C
    Int J Behav Nutr Phys Act; 2021 Jul; 18(1):97. PubMed ID: 34271922
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Improving Human Activity Recognition Performance by Data Fusion and Feature Engineering.
    Chen J; Sun Y; Sun S
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33498394
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Machine Learning Approach for Human Activity Recognition.
    Papoutsis A; Botilias G; Karvelis P; Stylios C
    Stud Health Technol Inform; 2020 Sep; 273():155-160. PubMed ID: 33087606
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Novel Segmentation Scheme with Multi-Probability Threshold for Human Activity Recognition Using Wearable Sensors.
    Zhou B; Wang C; Huan Z; Li Z; Chen Y; Gao G; Li H; Dong C; Liang J
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236542
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Human Activity Recognition Algorithm with Physiological and Inertial Signals Fusion: Photoplethysmography, Electrodermal Activity, and Accelerometry.
    Gilmore J; Nasseri M
    Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38793858
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Machine learning algorithms for activity recognition in ambulant children and adolescents with cerebral palsy.
    Ahmadi M; O'Neil M; Fragala-Pinkham M; Lennon N; Trost S
    J Neuroeng Rehabil; 2018 Nov; 15(1):105. PubMed ID: 30442154
    [TBL] [Abstract][Full Text] [Related]  

  • 27. StresSense: Real-Time detection of stress-displaying behaviors.
    Saddaf Khan N; Qadir S; Anjum G; Uddin N
    Int J Med Inform; 2024 May; 185():105401. PubMed ID: 38493546
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Comprehensive Analysis on Wearable Acceleration Sensors in Human Activity Recognition.
    Janidarmian M; Roshan Fekr A; Radecka K; Zilic Z
    Sensors (Basel); 2017 Mar; 17(3):. PubMed ID: 28272362
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A hybrid deep approach to recognizing student activity and monitoring health physique based on accelerometer data from smartphones.
    Xiao L; Luo K; Liu J; Foroughi A
    Sci Rep; 2024 Jun; 14(1):14006. PubMed ID: 38890409
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of Data Preprocessing Approaches for Applying Deep Learning to Human Activity Recognition in the Context of Industry 4.0.
    Zheng X; Wang M; Ordieres-Meré J
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 29970873
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced Human Activity Recognition Based on Smartphone Sensor Data Using Hybrid Feature Selection Model.
    Ahmed N; Rafiq JI; Islam MR
    Sensors (Basel); 2020 Jan; 20(1):. PubMed ID: 31935943
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Disentangling data dependency using cross-validation strategies to evaluate prediction quality of cattle grazing activities using machine learning algorithms and wearable sensor data.
    Coelho Ribeiro LA; Bresolin T; Rosa GJM; Rume Casagrande D; Danes MAC; Dórea JRR
    J Anim Sci; 2021 Sep; 99(9):. PubMed ID: 34223900
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Wearable Sensor-Based Human Activity Recognition with Transformer Model.
    Dirgová Luptáková I; Kubovčík M; Pospíchal J
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271058
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The need to approximate the use-case in clinical machine learning.
    Saeb S; Lonini L; Jayaraman A; Mohr DC; Kording KP
    Gigascience; 2017 May; 6(5):1-9. PubMed ID: 28327985
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced Human Activity Recognition Using Wearable Sensors via a Hybrid Feature Selection Method.
    Fan C; Gao F
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640754
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Out-of-Distribution Detection of Human Activity Recognition with Smartwatch Inertial Sensors.
    Boyer P; Burns D; Whyne C
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33804317
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Leveraging Wearable Sensors for Human Daily Activity Recognition with Stacked Denoising Autoencoders.
    Ni Q; Fan Z; Zhang L; Nugent CD; Cleland I; Zhang Y; Zhou N
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32911780
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A general framework for sensor-based human activity recognition.
    Köping L; Shirahama K; Grzegorzek M
    Comput Biol Med; 2018 Apr; 95():248-260. PubMed ID: 29361267
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An open-source tool to identify active travel from hip-worn accelerometer, GPS and GIS data.
    Procter DS; Page AS; Cooper AR; Nightingale CM; Ram B; Rudnicka AR; Whincup PH; Clary C; Lewis D; Cummins S; Ellaway A; Giles-Corti B; Cook DG; Owen CG
    Int J Behav Nutr Phys Act; 2018 Sep; 15(1):91. PubMed ID: 30241483
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identifying bedrest using 24-h waist or wrist accelerometry in adults.
    Tracy JD; Acra S; Chen KY; Buchowski MS
    PLoS One; 2018; 13(3):e0194461. PubMed ID: 29570740
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.