These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 3073053)

  • 1. Cyanogenesis and the role of cyanogenic compounds in insects.
    Nahrstedt A
    Ciba Found Symp; 1988; 140():131-50. PubMed ID: 3073053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cyanogenesis in plants and arthropods.
    Zagrobelny M; Bak S; Møller BL
    Phytochemistry; 2008 May; 69(7):1457-68. PubMed ID: 18353406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oximes, nitriles and 2-hydroxynitriles as precursors in the biosynthesis of cyanogenic glucosides.
    Tapper BA; Butler GW
    Biochem J; 1971 Oct; 124(5):935-41. PubMed ID: 5131015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial separation of the cyanogenic β-glucosidase ZfBGD2 and cyanogenic glucosides in the haemolymph of
    Pentzold S; Jensen MK; Matthes A; Olsen CE; Petersen BL; Clausen H; Møller BL; Bak S; Zagrobelny M
    R Soc Open Sci; 2017 Jun; 4(6):170262. PubMed ID: 28680679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyanogenesis, a Plant Defence Strategy against Herbivores.
    Boter M; Diaz I
    Int J Mol Sci; 2023 Apr; 24(8):. PubMed ID: 37108149
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cyanogenic glucosides and plant-insect interactions.
    Zagrobelny M; Bak S; Rasmussen AV; Jørgensen B; Naumann CM; Lindberg Møller B
    Phytochemistry; 2004 Feb; 65(3):293-306. PubMed ID: 14751300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequestration, tissue distribution and developmental transmission of cyanogenic glucosides in a specialist insect herbivore.
    Zagrobelny M; Olsen CE; Pentzold S; Fürstenberg-Hägg J; Jørgensen K; Bak S; Møller BL; Motawia MS
    Insect Biochem Mol Biol; 2014 Jan; 44():44-53. PubMed ID: 24269868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The dynamics of cyanide defences in the life cycle of an aposematic butterfly: Biosynthesis versus sequestration.
    Pinheiro de Castro ÉC; Demirtas R; Orteu A; Olsen CE; Motawie MS; Zikan Cardoso M; Zagrobelny M; Bak S
    Insect Biochem Mol Biol; 2020 Jan; 116():103259. PubMed ID: 31698083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cyanogenesis in Arthropods: From Chemical Warfare to Nuptial Gifts.
    Zagrobelny M; de Castro ÉCP; Møller BL; Bak S
    Insects; 2018 May; 9(2):. PubMed ID: 29751568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biosynthesis of the nitrile glucosides rhodiocyanoside A and D and the cyanogenic glucosides lotaustralin and linamarin in Lotus japonicus.
    Forslund K; Morant M; Jørgensen B; Olsen CE; Asamizu E; Sato S; Tabata S; Bak S
    Plant Physiol; 2004 May; 135(1):71-84. PubMed ID: 15122013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 454 pyrosequencing based transcriptome analysis of Zygaena filipendulae with focus on genes involved in biosynthesis of cyanogenic glucosides.
    Zagrobelny M; Scheibye-Alsing K; Jensen NB; Møller BL; Gorodkin J; Bak S
    BMC Genomics; 2009 Dec; 10():574. PubMed ID: 19954531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyanogenic glucosides in the biological warfare between plants and insects: the Burnet moth-Birdsfoot trefoil model system.
    Zagrobelny M; Møller BL
    Phytochemistry; 2011 Sep; 72(13):1585-92. PubMed ID: 21429539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diversification of an ancient theme: hydroxynitrile glucosides.
    Bjarnholt N; Rook F; Motawia MS; Cornett C; Jørgensen C; Olsen CE; Jaroszewski JW; Bak S; Møller BL
    Phytochemistry; 2008 May; 69(7):1507-16. PubMed ID: 18342345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic screening identifies cyanogenesis-deficient mutants of Lotus japonicus and reveals enzymatic specificity in hydroxynitrile glucoside metabolism.
    Takos A; Lai D; Mikkelsen L; Abou Hachem M; Shelton D; Motawia MS; Olsen CE; Wang TL; Martin C; Rook F
    Plant Cell; 2010 May; 22(5):1605-19. PubMed ID: 20453117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel cytochrome P450, CYP3201B1, is involved in (
    Yamaguchi T; Kuwahara Y; Asano Y
    FEBS Open Bio; 2017 Mar; 7(3):335-347. PubMed ID: 28286729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The molecular biology of cyanogenesis.
    Hughes MA; Sharif AL; Dunn MA; Oxtoby E
    Ciba Found Symp; 1988; 140():111-30. PubMed ID: 3149931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Convergent evolution in biosynthesis of cyanogenic defence compounds in plants and insects.
    Jensen NB; Zagrobelny M; Hjernø K; Olsen CE; Houghton-Larsen J; Borch J; Møller BL; Bak S
    Nat Commun; 2011; 2():273. PubMed ID: 21505429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosynthesis and regulation of cyanogenic glycoside production in forage plants.
    Sun Z; Zhang K; Chen C; Wu Y; Tang Y; Georgiev MI; Zhang X; Lin M; Zhou M
    Appl Microbiol Biotechnol; 2018 Jan; 102(1):9-16. PubMed ID: 29022076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosynthesis of cyanogenic glycosides.
    Conn EE
    Biochem Soc Symp; 1973; (38):277-302. PubMed ID: 4620367
    [No Abstract]   [Full Text] [Related]  

  • 20. Transcriptional regulation of de novo biosynthesis of cyanogenic glucosides throughout the life-cycle of the burnet moth Zygaena filipendulae (Lepidoptera).
    Fürstenberg-Hägg J; Zagrobelny M; Olsen CE; Jørgensen K; Møller BL; Bak S
    Insect Biochem Mol Biol; 2014 Jun; 49():80-9. PubMed ID: 24727026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.