These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 30730703)

  • 1. Reversible Self-Assembly of Nanoprobes in Live Cells for Dynamic Intracellular pH Imaging.
    Dong B; Du S; Wang C; Fu H; Li Q; Xiao N; Yang J; Xue X; Cai W; Liu D
    ACS Nano; 2019 Feb; 13(2):1421-1432. PubMed ID: 30730703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. pH-induced vesicle-to-micelle transition in amphiphilic diblock copolymer: investigation by energy transfer between in situ formed polymer embedded gold nanoparticles and fluorescent dye.
    Maiti C; Banerjee R; Maiti S; Dhara D
    Langmuir; 2015; 31(1):32-41. PubMed ID: 25494810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-Assembly of 2D Gold Nanoparticle Superlattice in a Polymer Vesicle Layer Driven by Hydrophobic Interaction.
    Jang JD; Bae M; Do C; Choi SH; Bang J; Han YS; Kim TH
    J Phys Chem Lett; 2021 Jul; 12(28):6736-6743. PubMed ID: 34264079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shieldable tumor targeting based on pH responsive self-assembly/disassembly of gold nanoparticles.
    Tian Z; Yang C; Wang W; Yuan Z
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17865-76. PubMed ID: 25233129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA-π Amphiphiles: A Unique Building Block for the Crafting of DNA-Decorated Unilamellar Nanostructures.
    Albert SK; Golla M; Krishnan N; Perumal D; Varghese R
    Acc Chem Res; 2020 Nov; 53(11):2668-2679. PubMed ID: 33052654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. pH-Sensitive Reversible Programmed Targeting Strategy by the Self-Assembly/Disassembly of Gold Nanoparticles.
    Ma J; Hu Z; Wang W; Wang X; Wu Q; Yuan Z
    ACS Appl Mater Interfaces; 2017 May; 9(20):16767-16777. PubMed ID: 28489342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. pH-Dependent aggregation and pH-independent cell membrane adhesion of monolayer-protected mixed charged gold nanoparticles.
    Shen Z; Baker W; Ye H; Li Y
    Nanoscale; 2019 Apr; 11(15):7371-7385. PubMed ID: 30938720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A pH-responsive DNA nanomachine-controlled catalytic assembly of gold nanoparticles.
    Yao D; Li H; Guo Y; Zhou X; Xiao S; Liang H
    Chem Commun (Camb); 2016 Jun; 52(48):7556-9. PubMed ID: 27225943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-Assembly of Luminescent Gold Nanoparticles with Sensitive pH-Stimulated Structure Transformation and Emission Response toward Lysosome Escape and Intracellular Imaging.
    Zhu J; He K; Dai Z; Gong L; Zhou T; Liang H; Liu J
    Anal Chem; 2019 Jul; 91(13):8237-8243. PubMed ID: 31134793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Near-infrared light-responsive vesicles of Au nanoflowers.
    He J; Zhang P; Babu T; Liu Y; Gong J; Nie Z
    Chem Commun (Camb); 2013 Jan; 49(6):576-8. PubMed ID: 23223190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmonic vesicles of amphiphilic gold nanocrystals: self-assembly and external-stimuli-triggered destruction.
    Song J; Cheng L; Liu A; Yin J; Kuang M; Duan H
    J Am Chem Soc; 2011 Jul; 133(28):10760-3. PubMed ID: 21699155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Smart pH-sensitive micelles based on redox degradable polymers as DOX/GNPs carriers for controlled drug release and CT imaging.
    Xiong D; Zhang X; Peng S; Gu H; Zhang L
    Colloids Surf B Biointerfaces; 2018 Mar; 163():29-40. PubMed ID: 29278801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reversible assembly and disassembly of gold nanoparticles directed by a zwitterionic polymer.
    Ding Y; Xia XH; Zhai HS
    Chemistry; 2007; 13(15):4197-202. PubMed ID: 17236228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Smart core/shell nanocomposites: intelligent polymers modified gold nanoparticles.
    Li D; He Q; Li J
    Adv Colloid Interface Sci; 2009 Jul; 149(1-2):28-38. PubMed ID: 19201389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. pH-responsive gold nanoparticles-in-liposome hybrid nanostructures for enhanced systemic tumor delivery.
    Nam J; Ha YS; Hwang S; Lee W; Song J; Yoo J; Kim S
    Nanoscale; 2013 Nov; 5(21):10175-8. PubMed ID: 24057056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface plasmon resonance as a tool for investigation of non-covalent nanoparticle interactions in heterogeneous self-assembly & disassembly systems.
    Shevchenko KG; Cherkasov VR; Tregubov AA; Nikitin PI; Nikitin MP
    Biosens Bioelectron; 2017 Feb; 88():3-8. PubMed ID: 27665167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increasing the Morphological Stability of DNA-Templated Nanostructures with Surface Hydrophobicity.
    Lermusiaux L; Bidault S
    Small; 2015 Nov; 11(42):5696-704. PubMed ID: 26395441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cooperative Self-Assembly Transfer from Hierarchical Supramolecular Polymers to Gold Nanoparticles.
    Coelho JP; Tardajos G; Stepanenko V; Rödle A; Fernández G; Guerrero-Martínez A
    ACS Nano; 2015 Nov; 9(11):11241-8. PubMed ID: 26493583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. pH-Controlled Intracellular in Situ Reversible Assembly of a Photothermal Agent for Smart Chemo-Photothermal Synergetic Therapy and ATP Imaging.
    Zhang J; Cui YX; Feng XN; Cheng M; Tang AN; Kong DM
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):39624-39632. PubMed ID: 31573175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assembled core-shell nanostructures of gold nanoparticles with biocompatible polymers toward biology.
    Li D; Li Q; Hao X; Zhang Y; Zhang Z; Li C
    Curr Top Med Chem; 2014 Mar; 14(5):595-616. PubMed ID: 24444166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.