BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 30730736)

  • 1. Cosolvent Effects on the Growth of Protein Aggregates Formed by a Single Domain Globular Protein and an Intrinsically Disordered Protein.
    Mondal B; Reddy G
    J Phys Chem B; 2019 Mar; 123(9):1950-1960. PubMed ID: 30730736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cosolvent effects on the growth of amyloid fibrils.
    Reddy G; Muttathukattil AN; Mondal B
    Curr Opin Struct Biol; 2020 Feb; 60():101-109. PubMed ID: 31918360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. General Purpose Water Model Can Improve Atomistic Simulations of Intrinsically Disordered Proteins.
    Shabane PS; Izadi S; Onufriev AV
    J Chem Theory Comput; 2019 Apr; 15(4):2620-2634. PubMed ID: 30865832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synergistic approaches unraveling regulation and aggregation of intrinsically disordered β-amyloids implicated in Alzheimer's disease.
    Kumari A; Rajput R; Shrivastava N; Somvanshi P; Grover A
    Int J Biochem Cell Biol; 2018 Jun; 99():19-27. PubMed ID: 29571707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of polyols on the structure and aggregation of recombinant human γ-Synuclein, an intrinsically disordered protein.
    Roy S; Bhat R
    Biochim Biophys Acta Proteins Proteom; 2018 Oct; 1866(10):1029-1042. PubMed ID: 30003969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamic perspective on the dock-lock growth mechanism of amyloid fibrils.
    O'Brien EP; Okamoto Y; Straub JE; Brooks BR; Thirumalai D
    J Phys Chem B; 2009 Oct; 113(43):14421-30. PubMed ID: 19813700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of Nucleation and Growth of Aβ40 Fibrils from All-Atom and Coarse-Grained Simulations.
    Sasmal S; Schwierz N; Head-Gordon T
    J Phys Chem B; 2016 Dec; 120(47):12088-12097. PubMed ID: 27806205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disorder under stress: Role of polyol osmolytes in modulating fibrillation and aggregation of intrinsically disordered proteins.
    Verma G; Singh P; Bhat R
    Biophys Chem; 2020 Sep; 264():106422. PubMed ID: 32707418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Presence of intrinsically disordered proteins can inhibit the nucleation phase of amyloid fibril formation of Aβ(1-42) in amino acid sequence independent manner.
    Ikeda K; Suzuki S; Shigemitsu Y; Tenno T; Goda N; Oshima A; Hiroaki H
    Sci Rep; 2020 Jul; 10(1):12334. PubMed ID: 32703978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Practical Guide to All-Atom and Coarse-Grained Molecular Dynamics Simulations Using Amber and Gromacs: A Case Study of Disulfide-Bond Impact on the Intrinsically Disordered Amyloid Beta.
    Smardz P; Anila MM; Rogowski P; Li MS; Różycki B; Krupa P
    Int J Mol Sci; 2024 Jun; 25(12):. PubMed ID: 38928405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of Seeded Aβ40-Fibril Growth from Atomistic Molecular Dynamics Simulations: Kinetic Trapping and Reduced Water Mobility in the Locking Step.
    Schwierz N; Frost CV; Geissler PL; Zacharias M
    J Am Chem Soc; 2016 Jan; 138(2):527-39. PubMed ID: 26694883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation and aggregation of intrinsically disordered peptides.
    Levine ZA; Larini L; LaPointe NE; Feinstein SC; Shea JE
    Proc Natl Acad Sci U S A; 2015 Mar; 112(9):2758-63. PubMed ID: 25691742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of amyloid-β fibril elongation.
    Gurry T; Stultz CM
    Biochemistry; 2014 Nov; 53(44):6981-91. PubMed ID: 25330398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trimethylamine N-oxide abolishes the chaperone activity of α-casein: an intrinsically disordered protein.
    Bhat MY; Singh LR; Dar TA
    Sci Rep; 2017 Jul; 7(1):6572. PubMed ID: 28747709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring the aggregation free energy landscape of the amyloid-β protein (1-40).
    Zheng W; Tsai MY; Chen M; Wolynes PG
    Proc Natl Acad Sci U S A; 2016 Oct; 113(42):11835-11840. PubMed ID: 27698130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trimethylamine N-oxide alters structure-function integrity of β-casein: Structural disorder co-regulates the aggregation propensity and chaperone activity.
    Bhat MY; Malik MA; Singh LR; Dar TA
    Int J Biol Macromol; 2021 Jul; 182():921-930. PubMed ID: 33872615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of electrostatic interactions in binding of peptides and intrinsically disordered proteins to their folded targets. 1. NMR and MD characterization of the complex between the c-Crk N-SH3 domain and the peptide Sos.
    Xue Y; Yuwen T; Zhu F; Skrynnikov NR
    Biochemistry; 2014 Oct; 53(41):6473-95. PubMed ID: 25207671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression and Purification of Intrinsically Disordered Aβ Peptide and Setup of Reproducible Aggregation Kinetics Experiment.
    Linse S
    Methods Mol Biol; 2020; 2141():731-754. PubMed ID: 32696387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Salt-bridge dynamics in intrinsically disordered proteins: A trade-off between electrostatic interactions and structural flexibility.
    Basu S; Biswas P
    Biochim Biophys Acta Proteins Proteom; 2018; 1866(5-6):624-641. PubMed ID: 29548979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Grafting on Aggregation of Intrinsically Disordered Proteins.
    Osmanovic D; Rabin Y
    Biophys J; 2018 Feb; 114(3):534-538. PubMed ID: 29395045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.