BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 30730851)

  • 1. Mature neutrophils suppress T cell immunity in ovarian cancer microenvironment.
    Singel KL; Emmons TR; Khan ANH; Mayor PC; Shen S; Wong JT; Morrell K; Eng KH; Mark J; Bankert RB; Matsuzaki J; Koya RC; Blom AM; McLeish KR; Qu J; Ram S; Moysich KB; Abrams SI; Odunsi K; Zsiros E; Segal BH
    JCI Insight; 2019 Mar; 4(5):. PubMed ID: 30730851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms Driving Neutrophil-Induced T-cell Immunoparalysis in Ovarian Cancer.
    Emmons TR; Giridharan T; Singel KL; Khan ANH; Ricciuti J; Howard K; Silva-Del Toro SL; Debreceni IL; Aarts CEM; Brouwer MC; Suzuki S; Kuijpers TW; Jongerius I; Allen LH; Ferreira VP; Schubart A; Sellner H; Eder J; Holland SM; Ram S; Lederer JA; Eng KH; Moysich KB; Odunsi K; Yaffe MB; Zsiros E; Segal BH
    Cancer Immunol Res; 2021 Jul; 9(7):790-810. PubMed ID: 33990375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of Arginase 1 Liberates Potent T Cell Immunostimulatory Activity of Human Neutrophil Granulocytes.
    Vonwirth V; Bülbül Y; Werner A; Echchannaoui H; Windschmitt J; Habermeier A; Ioannidis S; Shin N; Conradi R; Bros M; Tenzer S; Theobald M; Closs EI; Munder M
    Front Immunol; 2020; 11():617699. PubMed ID: 33717053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intraperitoneal neutrophils activated by KRAS-induced ovarian cancer exert antitumor effects by modulating adaptive immunity.
    Yoshida M; Taguchi A; Kawana K; Ogishima J; Adachi K; Kawata A; Nakamura H; Sato M; Fujimoto A; Inoue T; Tomio K; Mori M; Nagamatsu T; Arimoto T; Koga K; Hiraike OW; Oda K; Kiyono T; Osuga Y; Fujii T
    Int J Oncol; 2018 Oct; 53(4):1580-1590. PubMed ID: 30066851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. VSSP abrogates murine ovarian tumor-associated myeloid cell-driven immune suppression and induces M1 polarization in tumor-associated macrophages from ovarian cancer patients.
    Khan ANH; Emmons TR; Magner WJ; Alqassim E; Singel KL; Ricciuti J; Eng KH; Odunsi K; Tomasi TB; Lee K; Abrams SI; Mesa C; Segal BH
    Cancer Immunol Immunother; 2022 Oct; 71(10):2355-2369. PubMed ID: 35166871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bone Marrow Neutrophils of Multiple Myeloma Patients Exhibit Myeloid-Derived Suppressor Cell Activity.
    Petersson J; Askman S; Pettersson Å; Wichert S; Hellmark T; Johansson ÅCM; Hansson M
    J Immunol Res; 2021; 2021():6344344. PubMed ID: 34414242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clinical Relevance and Suppressive Capacity of Human Myeloid-Derived Suppressor Cell Subsets.
    Lang S; Bruderek K; Kaspar C; Höing B; Kanaan O; Dominas N; Hussain T; Droege F; Eyth C; Hadaschik B; Brandau S
    Clin Cancer Res; 2018 Oct; 24(19):4834-4844. PubMed ID: 29914893
    [No Abstract]   [Full Text] [Related]  

  • 8. Decidua-derived granulocyte macrophage colony-stimulating factor induces polymorphonuclear myeloid-derived suppressor cells from circulating CD15+ neutrophils.
    Li C; Chen C; Kang X; Zhang X; Sun S; Guo F; Wang Q; Kou X; Bai W; Zhao A
    Hum Reprod; 2020 Dec; 35(12):2677-2691. PubMed ID: 33067638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tumor conditions induce bone marrow expansion of granulocytic, but not monocytic, immunosuppressive leukocytes with increased CXCR2 expression in mice.
    Bian Z; Shi L; Venkataramani M; Abdelaal AM; Culpepper C; Kidder K; Liang H; Zen K; Liu Y
    Eur J Immunol; 2018 Mar; 48(3):532-542. PubMed ID: 29120053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting myeloid cells in the tumor microenvironment enhances vaccine efficacy in murine epithelial ovarian cancer.
    Khan AN; Kolomeyevskaya N; Singel KL; Grimm MJ; Moysich KB; Daudi S; Grzankowski KS; Lele S; Ylagan L; Webster GA; Abrams SI; Odunsi K; Segal BH
    Oncotarget; 2015 May; 6(13):11310-26. PubMed ID: 25888637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human splenic polymorphonuclear myeloid-derived suppressor cells (PMN-MDSC) are strategically located immune regulatory cells in cancer.
    Tavukcuoglu E; Horzum U; Yanik H; Uner A; Yoyen-Ermis D; Nural SK; Aydin B; Sokmensuer C; Karakoc D; Yilmaz KB; Hamaloglu E; Esendagli G
    Eur J Immunol; 2020 Dec; 50(12):2067-2074. PubMed ID: 32691408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibiting myeloid-derived suppressor cell trafficking enhances T cell immunotherapy.
    Sun L; Clavijo PE; Robbins Y; Patel P; Friedman J; Greene S; Das R; Silvin C; Van Waes C; Horn LA; Schlom J; Palena C; Maeda D; Zebala J; Allen CT
    JCI Insight; 2019 Apr; 4(7):. PubMed ID: 30944253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tumor promoting capacity of polymorphonuclear myeloid-derived suppressor cells and their neutralization.
    Groth C; Weber R; Lasser S; Özbay FG; Kurzay A; Petrova V; Altevogt P; Utikal J; Umansky V
    Int J Cancer; 2021 Nov; 149(9):1628-1638. PubMed ID: 34224592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polymorphonuclear neutrophils enhance suppressive activities of anti-CD3-induced CD4+ suppressor T cells.
    Hirohata S; Yanagida T; Yoshino Y; Miyashita H
    Cell Immunol; 1995 Feb; 160(2):270-7. PubMed ID: 7720089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Levels of peripheral blood polymorphonuclear myeloid-derived suppressor cells and selected cytokines are potentially prognostic of disease progression for patients with non-small cell lung cancer.
    Barrera L; Montes-Servín E; Hernandez-Martinez JM; Orozco-Morales M; Montes-Servín E; Michel-Tello D; Morales-Flores RA; Flores-Estrada D; Arrieta O
    Cancer Immunol Immunother; 2018 Sep; 67(9):1393-1406. PubMed ID: 29974189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neutrophils as Suppressors of T Cell Proliferation: Does Age Matter?
    Aarts CEM; Hiemstra IH; Tool ATJ; van den Berg TK; Mul E; van Bruggen R; Kuijpers TW
    Front Immunol; 2019; 10():2144. PubMed ID: 31572368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Different Lipid Regulation in Ovarian Cancer: Inhibition of the Immune System.
    Wefers C; Duiveman-de Boer T; Zusterzeel PLM; Massuger LFAG; Fuchs D; Torensma R; Wheelock CE; de Vries IJM
    Int J Mol Sci; 2018 Jan; 19(1):. PubMed ID: 29342108
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polymorphonuclear Myeloid-Derived Suppressor Cells Are Abundant in Peripheral Blood of Cancer Patients and Suppress Natural Killer Cell Anti-Tumor Activity.
    Tumino N; Besi F; Martini S; Di Pace AL; Munari E; Quatrini L; Pelosi A; Fiore PF; Fiscon G; Paci P; Scordamaglia F; Covesnon MG; Bogina G; Mingari MC; Moretta L; Vacca P
    Front Immunol; 2021; 12():803014. PubMed ID: 35116033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. STAT3 Silencing and TLR7/8 Pathway Activation Repolarize and Suppress Myeloid-Derived Suppressor Cells From Breast Cancer Patients.
    Safarzadeh E; Mohammadi A; Mansoori B; Duijf PHG; Hashemzadeh S; Khaze V; Kazemi T; Derakhshani A; Silvestris N; Baradaran B
    Front Immunol; 2020; 11():613215. PubMed ID: 33679700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myeloid-derived suppressor cells modulate immune responses independently of NADPH oxidase in the ovarian tumor microenvironment in mice.
    Godoy HE; Khan AN; Vethanayagam RR; Grimm MJ; Singel KL; Kolomeyevskaya N; Sexton KJ; Parameswaran A; Abrams SI; Odunsi K; Segal BH
    PLoS One; 2013; 8(7):e69631. PubMed ID: 23922763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.