BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 30730992)

  • 1. The structural basis of unique substrate recognition by Plasmodium thymidylate kinase: Molecular dynamics simulation and inhibitory studies.
    Kandeel M; Kitade Y; Al-Taher A; Al-Nazawi M
    PLoS One; 2019; 14(2):e0212065. PubMed ID: 30730992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbocyclic thymidine derivatives efficiently inhibit Plasmodium falciparum thymidylate kinase (PfTMK).
    Kato A; Yasuda Y; Kitamura Y; Kandeel M; Kitade Y
    Parasitol Int; 2012 Sep; 61(3):501-3. PubMed ID: 22425904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The substrate binding preferences of Plasmodium thymidylate kinase.
    Kandeel M; Kitade Y
    Biol Pharm Bull; 2011; 34(1):173-6. PubMed ID: 21212540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutational, inhibitory and microcalorimetric analyses of Plasmodium falciparum TMP kinase. Implications for drug discovery.
    Kandeel M; Ando T; Kitamura Y; Abdel-Aziz M; Kitade Y
    Parasitology; 2009 Jan; 136(1):11-25. PubMed ID: 19126267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. dGMP Binding to Thymidylate Kinase from
    Chen MD; Fucci IJ; Sinha K; Rule GS
    Biochemistry; 2020 Feb; 59(5):694-703. PubMed ID: 31934749
    [No Abstract]   [Full Text] [Related]  

  • 6. Molecular characterization, heterologous expression and kinetic analysis of recombinant Plasmodium falciparum thymidylate kinase.
    Kandeel M; Kitade Y
    J Biochem; 2008 Aug; 144(2):245-50. PubMed ID: 18477629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of carbocyclic pyrimidine nucleosides and their inhibitory activities against Plasmodium falciparum thymidylate kinase.
    Noguchi Y; Yasuda Y; Tashiro M; Kataoka T; Kitamura Y; Kandeel M; Kitade Y
    Parasitol Int; 2013 Aug; 62(4):368-71. PubMed ID: 23583697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of α-Thymidine Inhibitors with Thymidylate Kinase from Plasmodium falciparum.
    Chen MD; Sinha K; Rule GS; Ly DH
    Biochemistry; 2018 May; 57(19):2868-2875. PubMed ID: 29684273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In-Silico molecular docking and simulation studies on novel chalcone and flavone hybrid derivatives with 1, 2, 3-triazole linkage as vital inhibitors of Plasmodium falciparum dihydroorotate dehydrogenase.
    Thillainayagam M; Malathi K; Ramaiah S
    J Biomol Struct Dyn; 2018 Nov; 36(15):3993-4009. PubMed ID: 29132266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thymidylate kinase: the lost chemotherapeutic target.
    Kandeel M; Kato A; Kitamura Y; Kitade Y
    Nucleic Acids Symp Ser (Oxf); 2009; (53):283-4. PubMed ID: 19749371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and functional roles of dynamically correlated residues in thymidylate kinase.
    Chaudhary SK; Jeyakanthan J; Sekar K
    Acta Crystallogr D Struct Biol; 2018 Apr; 74(Pt 4):341-354. PubMed ID: 29652261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural basis for the efficient phosphorylation of AZT-MP (3'-azido-3'-deoxythymidine monophosphate) and dGMP by Plasmodium falciparum type I thymidylate kinase.
    Whittingham JL; Carrero-Lerida J; Brannigan JA; Ruiz-Perez LM; Silva AP; Fogg MJ; Wilkinson AJ; Gilbert IH; Wilson KS; González-Pacanowska D
    Biochem J; 2010 May; 428(3):499-509. PubMed ID: 20353400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of sequence evolution and conformational dynamics in the substrate specificity and oligomerization mode of thymidylate kinases.
    Biswas A; Jasti S; Jeyakanthan J; Sekar K
    J Biomol Struct Dyn; 2017 Aug; 35(10):2136-2154. PubMed ID: 27376462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. First report on exploring structural requirements of α and β thymidine analogs for PfTMPK inhibitory activity using in silico studies.
    Ojha PK; Roy K
    Biosystems; 2013 Sep; 113(3):177-95. PubMed ID: 23850534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights into product release dynamics through structural analyses of thymidylate kinase.
    Chaudhary SK; Iyyappan Y; Elayappan M; Jeyakanthan J; Sekar K
    Int J Biol Macromol; 2019 Feb; 123():637-647. PubMed ID: 30447376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structures of S. aureus thymidylate kinase reveal an atypical active site configuration and an intermediate conformational state upon substrate binding.
    Kotaka M; Dhaliwal B; Ren J; Nichols CE; Angell R; Lockyer M; Hawkins AR; Stammers DK
    Protein Sci; 2006 Apr; 15(4):774-84. PubMed ID: 16522804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and evaluation of α-thymidine analogues as novel antimalarials.
    Cui H; Carrero-Lérida J; Silva AP; Whittingham JL; Brannigan JA; Ruiz-Pérez LM; Read KD; Wilson KS; González-Pacanowska D; Gilbert IH
    J Med Chem; 2012 Dec; 55(24):10948-57. PubMed ID: 23240776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural studies of a hyperthermophilic thymidylate kinase enzyme reveal conformational substates along the reaction coordinate.
    Biswas A; Shukla A; Chaudhary SK; Santhosh R; Jeyakanthan J; Sekar K
    FEBS J; 2017 Aug; 284(15):2527-2544. PubMed ID: 28627020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substrate specificity of vaccinia virus thymidylate kinase.
    Topalis D; Collinet B; Gasse C; Dugué L; Balzarini J; Pochet S; Deville-Bonne D
    FEBS J; 2005 Dec; 272(24):6254-65. PubMed ID: 16336263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insights into the phosphoryltransfer mechanism of human thymidylate kinase gained from crystal structures of enzyme complexes along the reaction coordinate.
    Ostermann N; Schlichting I; Brundiers R; Konrad M; Reinstein J; Veit T; Goody RS; Lavie A
    Structure; 2000 Jun; 8(6):629-42. PubMed ID: 10873853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.