These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
251 related articles for article (PubMed ID: 30732270)
1. Terahertz electric field modulated mode coupling in graphene-metal hybrid metamaterials. Li S; Nugraha PS; Su X; Chen X; Yang Q; Unferdorben M; Kovács F; Kunsági-Máté S; Liu M; Zhang X; Ouyang C; Li Y; Fülöp JA; Han J; Zhang W Opt Express; 2019 Feb; 27(3):2317-2326. PubMed ID: 30732270 [TBL] [Abstract][Full Text] [Related]
2. Hybrid metamaterial design and fabrication for terahertz resonance response enhancement. Lim CS; Hong MH; Chen ZC; Han NR; Luk'yanchuk B; Chong TC Opt Express; 2010 Jun; 18(12):12421-9. PubMed ID: 20588369 [TBL] [Abstract][Full Text] [Related]
3. Voltage-tunable dual-layer terahertz metamaterials. Zhao X; Fan K; Zhang J; Keiser GR; Duan G; Averitt RD; Zhang X Microsyst Nanoeng; 2016; 2():16025. PubMed ID: 31057825 [TBL] [Abstract][Full Text] [Related]
5. Modulating Fundamental Resonance in Capacitive Coupled Asymmetric Terahertz Metamaterials. Rao SJM; Srivastava YK; Kumar G; Roy Chowdhury D Sci Rep; 2018 Nov; 8(1):16773. PubMed ID: 30425280 [TBL] [Abstract][Full Text] [Related]
6. Towards loss compensated and lasing terahertz metamaterials based on optically pumped graphene. Weis P; Garcia-Pomar JL; Rahm M Opt Express; 2014 Apr; 22(7):8473-89. PubMed ID: 24718220 [TBL] [Abstract][Full Text] [Related]
7. Exceptional point in a metal-graphene hybrid metasurface with tunable asymmetric loss. Li S; Zhang X; Xu Q; Liu M; Kang M; Han J; Zhang W Opt Express; 2020 Jul; 28(14):20083-20094. PubMed ID: 32680076 [TBL] [Abstract][Full Text] [Related]
8. Heterointerface-Enhanced Ultrafast Optical Switching via Manipulating Metamaterial-Induced Transparency in a Hybrid Terahertz Graphene Metamaterial. Deng Y; Zhou Q; Zhang P; Jiang N; Ning T; Liang W; Zhang C ACS Appl Mater Interfaces; 2021 Mar; 13(11):13565-13575. PubMed ID: 33720680 [TBL] [Abstract][Full Text] [Related]
9. Hybrid Metal Graphene-Based Tunable Plasmon-Induced Transparency in Terahertz Metasurface. Wang X; Meng H; Deng S; Lao C; Wei Z; Wang F; Tan C; Huang X Nanomaterials (Basel); 2019 Mar; 9(3):. PubMed ID: 30845741 [TBL] [Abstract][Full Text] [Related]
10. Numerical and Theoretical Study of Tunable Plasmonically Induced Transparency Effect Based on Bright-Dark Mode Coupling in Graphene Metasurface. Ma Q; Dai J; Luo A; Hong W Nanomaterials (Basel); 2020 Jan; 10(2):. PubMed ID: 32013078 [TBL] [Abstract][Full Text] [Related]
11. Active Terahertz Modulator and Slow Light Metamaterial Devices with Hybrid Graphene-Superconductor Photonic Integrated Circuits. Kalhor S; Kindness SJ; Wallis R; Beere HE; Ghanaatshoar M; Degl'Innocenti R; Kelly MJ; Hofmann S; Joyce HJ; Ritchie DA; Delfanazari K Nanomaterials (Basel); 2021 Nov; 11(11):. PubMed ID: 34835762 [TBL] [Abstract][Full Text] [Related]
12. Conductive coupling of split ring resonators: a path to THz metamaterials with ultrasharp resonances. Al-Naib I; Hebestreit E; Rockstuhl C; Lederer F; Christodoulides D; Ozaki T; Morandotti R Phys Rev Lett; 2014 May; 112(18):183903. PubMed ID: 24856698 [TBL] [Abstract][Full Text] [Related]
13. Tailoring the plasmon-induced transparency resonances in terahertz metamaterials. Liu M; Tian Z; Zhang X; Gu J; Ouyang C; Han J; Zhang W Opt Express; 2017 Aug; 25(17):19844-19855. PubMed ID: 29041671 [TBL] [Abstract][Full Text] [Related]
14. Dynamic metamaterial based on the graphene split ring high-Q Fano-resonnator for sensing applications. Tang W; Wang L; Chen X; Liu C; Yu A; Lu W Nanoscale; 2016 Aug; 8(33):15196-204. PubMed ID: 27337105 [TBL] [Abstract][Full Text] [Related]
15. High performance metamaterials-high electron mobility transistors integrated terahertz modulator. Zhou Z; Wang S; Yu Y; Chen Y; Feng L Opt Express; 2017 Jul; 25(15):17832-17840. PubMed ID: 28789274 [TBL] [Abstract][Full Text] [Related]
16. Fano resonances in THz metamaterials composed of continuous metallic wires and split ring resonators. Li Z; Cakmakyapan S; Butun B; Daskalaki C; Tzortzakis S; Yang X; Ozbay E Opt Express; 2014 Nov; 22(22):26572-84. PubMed ID: 25401808 [TBL] [Abstract][Full Text] [Related]
17. Electrically tunable terahertz metamaterials with embedded large-area transparent thin-film transistor arrays. Xu WZ; Ren FF; Ye J; Lu H; Liang L; Huang X; Liu M; Shadrivov IV; Powell DA; Yu G; Jin B; Zhang R; Zheng Y; Tan HH; Jagadish C Sci Rep; 2016 Mar; 6():23486. PubMed ID: 27000419 [TBL] [Abstract][Full Text] [Related]
18. 3D conductive coupling for efficient generation of prominent Fano resonances in metamaterials. Liu Z; Liu Z; Li J; Li W; Li J; Gu C; Li ZY Sci Rep; 2016 Jun; 6():27817. PubMed ID: 27296109 [TBL] [Abstract][Full Text] [Related]
19. Antisymmetric resonant mode and negative refraction in double-ring resonators under normal-to-plane incidence. Ding P; Liang EJ; Zhang L; Zhou Q; Yuan YX Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 2):016604. PubMed ID: 19257157 [TBL] [Abstract][Full Text] [Related]