These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 30732298)

  • 1. Fabrication of Pancharatnam-Berry phase optical elements with highly stable polarization holography.
    Zhan T; Xiong J; Lee YH; Chen R; Wu ST
    Opt Express; 2019 Feb; 27(3):2632-2642. PubMed ID: 30732298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Standing wave polarization holography for realizing liquid crystal Pancharatnum-Berry phase lenses.
    He Z; Yin K; Wu ST
    Opt Express; 2020 Jul; 28(15):21729-21736. PubMed ID: 32752445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Voltage-controlled liquid crystal Pancharatnam-Berry phase lens with broadband operation and high photo-stability.
    Wang CT; Tam A; Meng C; Tseng MC; Li G; Kwok HS
    Opt Lett; 2020 Oct; 45(19):5323-5326. PubMed ID: 33001884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast-response Pancharatnam-Berry phase optical elements based on polymer-stabilized liquid crystal.
    Li S; Liu Y; Li Y; Liu S; Chen S; Su Y
    Opt Express; 2019 Aug; 27(16):22522-22531. PubMed ID: 31510543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-exposure fabrication of tunable Pancharatnam-Berry devices using a dye-doped liquid crystal.
    Li Y; Liu Y; Li S; Zhou P; Zhan T; Chen Q; Su Y; Wu ST
    Opt Express; 2019 Mar; 27(6):9054-9060. PubMed ID: 31052714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polarization-independent Pancharatnam-Berry phase lens system.
    Zhan T; Xiong J; Lee YH; Wu ST
    Opt Express; 2018 Dec; 26(26):35026-35033. PubMed ID: 30650917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scalar vortex beams produced by Pancharatnam-Berry phase optical elements that utilize polarization holography.
    Ye T; Wang J; Liu J; Qi P; Zheng S; Yang Y; Lin X; Huang Z; Tan X
    Opt Lett; 2023 Aug; 48(15):4105-4108. PubMed ID: 37527129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast switching ferroelectric liquid crystal Pancharatnam-Berry lens.
    Ma Y; Tam AMW; Gan XT; Shi LY; Srivastava AK; Chigrinov VG; Kwok HS; Zhao JL
    Opt Express; 2019 Apr; 27(7):10079-10086. PubMed ID: 31045154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spin-Controlled Multiple Pencil Beams and Vortex Beams with Different Polarizations Generated by Pancharatnam-Berry Coding Metasurfaces.
    Zhang L; Liu S; Li L; Cui TJ
    ACS Appl Mater Interfaces; 2017 Oct; 9(41):36447-36455. PubMed ID: 28944660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polarization-independent metasurface lens employing the Pancharatnam-Berry phase.
    Lin D; Holsteen AL; Maguid E; Fan P; Kik PG; Hasman E; Brongersma ML
    Opt Express; 2018 Sep; 26(19):24835-24842. PubMed ID: 30469594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compact polarization-resolved common-path digital holography based on the Pancharatnam-Berry phase.
    Zhang J; Dou J; Zhang M; Qi S; Zhao J
    Opt Lett; 2021 Dec; 46(23):5862-5865. PubMed ID: 34851909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pancharatnam-Berry optical element sorter of full angular momentum eigenstate.
    Walsh GF
    Opt Express; 2016 Mar; 24(6):6689-704. PubMed ID: 27136857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Propagation-invariant vectorial Bessel beams obtained by use of quantized Pancharatnam-Berry phase optical elements.
    Niv A; Biener G; Kleiner V; Hasman E
    Opt Lett; 2004 Feb; 29(3):238-40. PubMed ID: 14759037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoalignment-induced two-dimensional liquid crystal polarization structure via multi-beam polarization interferometry.
    Shi Y; Liu YJ; Song F; Chigrinov VG; Kwok HS; Hu M; Luo D; Sun XW
    Opt Express; 2018 Mar; 26(6):7683-7692. PubMed ID: 29609320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Total angular momentum sorting in the telecom infrared with silicon Pancharatnam-Berry transformation optics.
    Ruffato G; Capaldo P; Massari M; Mafakheri E; Romanato F
    Opt Express; 2019 May; 27(11):15750-15764. PubMed ID: 31163766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromatic aberration correction in bi-focal augmented reality display by the multi-layer Pancharatnam-Berry phase lens.
    Ma Y; Zhang W; Liu Y; Tian T; Luo D
    Opt Express; 2022 May; 30(11):18772-18780. PubMed ID: 36221671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thin-film Pancharatnam lens with low f-number and high quality.
    Gao K; Cheng HH; Bhowmik AK; Bos PJ
    Opt Express; 2015 Oct; 23(20):26086-94. PubMed ID: 26480123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superimposed surface-relief diffraction grating holographic lenses on azo-polymer films.
    Sabat RG
    Opt Express; 2013 Apr; 21(7):8711-23. PubMed ID: 23571960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low f-Number Diffraction-Limited Pancharatnam-Berry Microlenses Enabled by Plasmonic Photopatterning of Liquid Crystal Polymers.
    Jiang M; Guo Y; Yu H; Zhou Z; Turiv T; Lavrentovich OD; Wei QH
    Adv Mater; 2019 May; 31(18):e1808028. PubMed ID: 30907480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Versatile Polarization Generation with an Aluminum Plasmonic Metasurface.
    Wu PC; Tsai WY; Chen WT; Huang YW; Chen TY; Chen JW; Liao CY; Chu CH; Sun G; Tsai DP
    Nano Lett; 2017 Jan; 17(1):445-452. PubMed ID: 27935318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.