These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 30732331)

  • 1. Thermal degradation of refractory layered metamaterial for thermophotovoltaic emitter under high vacuum condition.
    Kim JH; Jung SM; Shin MW
    Opt Express; 2019 Feb; 27(3):3039-3054. PubMed ID: 30732331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metamaterial emitter for thermophotovoltaics stable up to 1400 °C.
    Chirumamilla M; Krishnamurthy GV; Knopp K; Krekeler T; Graf M; Jalas D; Ritter M; Störmer M; Petrov AY; Eich M
    Sci Rep; 2019 May; 9(1):7241. PubMed ID: 31076610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal stability of tungsten based metamaterial emitter under medium vacuum and inert gas conditions.
    Chirumamilla M; Krishnamurthy GV; Rout SS; Ritter M; Störmer M; Petrov AY; Eich M
    Sci Rep; 2020 Feb; 10(1):3605. PubMed ID: 32107414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions.
    Dyachenko PN; Molesky S; Petrov AY; Störmer M; Krekeler T; Lang S; Ritter M; Jacob Z; Eich M
    Nat Commun; 2016 Jun; 7():11809. PubMed ID: 27263653
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mie-Metamaterials-Based Thermal Emitter for Near-Field Thermophotovoltaic Systems.
    Ghanekar A; Tian Y; Zhang S; Cui Y; Zheng Y
    Materials (Basel); 2017 Jul; 10(8):. PubMed ID: 28773241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hyperbolic metamaterial-based near-field thermophotovoltaic system for hundreds of nanometer vacuum gap.
    Jin S; Lim M; Lee SS; Lee BJ
    Opt Express; 2016 Mar; 24(6):A635-49. PubMed ID: 27136882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultra-broadband all-dielectric metamaterial thermal emitter for passive radiative cooling.
    Kong A; Cai B; Shi P; Yuan XC
    Opt Express; 2019 Oct; 27(21):30102-30115. PubMed ID: 31684263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel and efficient Mie-metamaterial thermal emitter for thermophotovoltaic systems.
    Ghanekar A; Lin L; Zheng Y
    Opt Express; 2016 May; 24(10):A868-77. PubMed ID: 27409959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Temperature Selective Emitter Design and Materials: Titanium Aluminum Nitride Alloys for Thermophotovoltaics.
    Jeon N; Mandia DJ; Gray SK; Foley JJ; Martinson ABF
    ACS Appl Mater Interfaces; 2019 Nov; 11(44):41347-41355. PubMed ID: 31652047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High efficiency thermophotovoltaic emitter by metamaterial-based nano-pyramid array.
    Gu W; Tang G; Tao W
    Opt Express; 2015 Nov; 23(24):30681-94. PubMed ID: 26698700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal Design of Wavelength Selective Thermal Emitter for Thermophotovoltaic Applications.
    Ghanekar A; Sun M; Zhang Z; Zheng Y
    J Therm Sci Eng Appl; 2018 Feb; 10(1):0110041-110044. PubMed ID: 29051797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural degradation of tungsten sandwiched in hafnia layers determined by in-situ XRD up to 1520 °C.
    Krishnamurthy GV; Chirumamilla M; Rout SS; Furlan KP; Krekeler T; Ritter M; Becker HW; Petrov AY; Eich M; Störmer M
    Sci Rep; 2021 Feb; 11(1):3330. PubMed ID: 33558611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunable Thermal Camouflage Based on GST Plasmonic Metamaterial.
    Kang Q; Li D; Guo K; Gao J; Guo Z
    Nanomaterials (Basel); 2021 Jan; 11(2):. PubMed ID: 33498418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple Resonance Metamaterial Emitter for Deception of Infrared Emission with Enhanced Energy Dissipation.
    Lee N; Yoon B; Kim T; Bae JY; Lim JS; Chang I; Cho HH
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8862-8869. PubMed ID: 31975584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification.
    Arpin KA; Losego MD; Cloud AN; Ning H; Mallek J; Sergeant NP; Zhu L; Yu Z; Kalanyan B; Parsons GN; Girolami GS; Abelson JR; Fan S; Braun PV
    Nat Commun; 2013; 4():2630. PubMed ID: 24129680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable wavelength selectivity of photonic metamaterials-based thermal devices.
    Tian Y; Ghanekar A; Liu X; Sheng J; Zheng Y
    J Photonics Energy; 2019 Jul; 9(3):. PubMed ID: 34084268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-dimensional trilayer grating with a metal/insulator/metal structure as a thermophotovoltaic emitter.
    Song J; Si M; Cheng Q; Luo Z
    Appl Opt; 2016 Feb; 55(6):1284-90. PubMed ID: 26906580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New insights into the thermal behavior and management of thermophotovoltaic systems.
    Blandre E; Vaillon R; Drévillon J
    Opt Express; 2019 Dec; 27(25):36340-36349. PubMed ID: 31873415
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical Tunneling Mediated Sub-Skin-Depth High Emissivity Tungsten Radiators.
    Cho JW; Lee KJ; Lee TI; Kim YB; Choi DG; Nam Y; Kim SK
    Nano Lett; 2019 Oct; 19(10):7093-7099. PubMed ID: 31469959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators.
    Bernardi MP; Dupré O; Blandre E; Chapuis PO; Vaillon R; Francoeur M
    Sci Rep; 2015 Jun; 5():11626. PubMed ID: 26112658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.