These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 30732341)

  • 1. Black silicon Schottky photodetector in sub-bandgap near-infrared regime.
    Hu F; Dai XY; Zhou ZQ; Kong XY; Sun SL; Zhang RJ; Wang SY; Lu M; Sun J
    Opt Express; 2019 Feb; 27(3):3161-3168. PubMed ID: 30732341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Silicon Sub-Bandgap Near-Infrared Photodetector with High Detectivity Based on Textured Si/Au Nanoparticle Schottky Junctions Covered with Graphene Film.
    Dai X; Wu L; Liu K; Ma F; Yang Y; Yu L; Sun J; Lu M
    Sensors (Basel); 2023 Jul; 23(13):. PubMed ID: 37448033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sub-bandgap near-infrared photovoltaic response in Au/Al
    Dai X; Wu L; Yu L; Yu Z; Ma F; Zhang Y; Yang Y; Sun J; Lu M
    Discov Nano; 2023 Mar; 18(1):33. PubMed ID: 36881340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Au nanoparticle-decorated silicon pyramids for plasmon-enhanced hot electron near-infrared photodetection.
    Qi Z; Zhai Y; Wen L; Wang Q; Chen Q; Iqbal S; Chen G; Xu J; Tu Y
    Nanotechnology; 2017 May; 28(27):275202. PubMed ID: 28531089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Near-infrared detection based on the excitation of hot electrons in Au/Si microcone array.
    Zhang Z; Yan J; You J; Zhu Y; Wang L; Zhong Z; Jiang Z
    Nanotechnology; 2024 Jul; 35(40):. PubMed ID: 38991504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultra-compact silicon waveguide-integrated Schottky photodetectors using perfect absorption from tapered metal nanobrick arrays.
    Kwon H; You JB; Jin Y; Yu K
    Opt Express; 2019 Jun; 27(12):16413-16424. PubMed ID: 31252867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly Responsive Near-Infrared Si/Sb
    Singh Y; Parmar R; Srivastava A; Yadav R; Kumar K; Rani S; Shashi ; Srivastava SK; Husale S; Sharma M; Kushvaha SS; Singh VN
    ACS Appl Mater Interfaces; 2023 Jun; 15(25):30443-30454. PubMed ID: 37326513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low dark current broadband 360-1650 nm ITO/Ag/n-Si Schottky photodetectors.
    Huang Z; Mao Y; Lin G; Yi X; Chang A; Li C; Chen S; Huang W; Wang J
    Opt Express; 2018 Mar; 26(5):5827-5834. PubMed ID: 29529784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. P3HT-graphene bilayer electrode for Schottky junction photodetectors.
    Aydın H; Kalkan SB; Varlikli C; Çelebi C
    Nanotechnology; 2018 Apr; 29(14):145502. PubMed ID: 29447121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface Engineering in SnO
    Xu M; Xu Z; Sun Z; Chen W; Wang L; Liu Y; Wang Y; Du X; Pan S
    ACS Appl Mater Interfaces; 2023 Jan; 15(2):3664-3672. PubMed ID: 36598173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-responsivity sub-bandgap hot-hole plasmonic Schottky detectors.
    Alavirad M; Olivieri A; Roy L; Berini P
    Opt Express; 2016 Oct; 24(20):22544-22554. PubMed ID: 27828325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CuSCN/Si heterojunction near-infrared photodetector based on micro/nano light-trapping structure.
    Liu B; Shen H; Zhang J; Chen D; Mao W
    Nanotechnology; 2023 Mar; 34(23):. PubMed ID: 36857771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of nanowire length on the performance of a self-driven NIR photodetector based on mono/bi-layer graphene (camphor)/Si-nanowire Schottky junction.
    Chaliyawala H; Aggarwal N; Purohit Z; Patel R; Gupta G; Jaffre A; Le Gall S; Ray A; Mukhopadhyay I
    Nanotechnology; 2020 May; 31(22):225208. PubMed ID: 32059203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Schottky graphene/Si photodetector based on metal-dielectric hybrid hollow-core photonic crystal fibers.
    Hosseinifar M; Ahmadi V; Ebnali-Heidari M
    Opt Lett; 2017 Dec; 42(24):5066-5069. PubMed ID: 29240138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Demonstration of SWIR Silicon-Based Photodetection by Using Thin ITO/Au/Au Nanoparticles/n-Si Structure.
    Li X; Deng Z; Ma Z; Jiang Y; Du C; Jia H; Wang W; Chen H
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Dual-Band Multilayer InSe Self-Powered Photodetector with High Performance Induced by Surface Plasmon Resonance and Asymmetric Schottky Junction.
    Dai M; Chen H; Feng R; Feng W; Hu Y; Yang H; Liu G; Chen X; Zhang J; Xu CY; Hu P
    ACS Nano; 2018 Aug; 12(8):8739-8747. PubMed ID: 30095888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-performance broadband photoresponse of self-powered Mg
    Zhu Q; Ye P; Tang Y; Zhu X; Cheng Z; Xu J; Xu M
    Nanotechnology; 2021 Dec; 33(11):. PubMed ID: 34874315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication and Characterization of a Self-Powered n-Bi
    Wang X; Tang Y; Wang W; Zhao H; Song Y; Kang C; Wang K
    Nanomaterials (Basel); 2022 May; 12(11):. PubMed ID: 35683678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resonant Grating-Enhanced Black Phosphorus Mid-Wave Infrared Photodetector.
    Lien MR; Wang N; Wu J; Soibel A; Gunapala SD; Wang H; Povinelli ML
    Nano Lett; 2022 Nov; 22(21):8704-8710. PubMed ID: 36287194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facilely Fabricated Zero-Bias Silicon-Based Plasmonic Photodetector in the Near-Infrared Region with a Schottky Barrier Properly Controlled by Nanoalloys.
    Okamoto S; Kusada K; Nomura Y; Takeda E; Inada Y; Hisada K; Anada S; Yamamoto K; Hirasawa T; Kitagawa H
    ACS Appl Mater Interfaces; 2024 Feb; 16(7):8984-8992. PubMed ID: 38326087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.