These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 30732347)

  • 1. A Kalman-based tomographic scheme for directly reconstructing activation levels of brain function.
    Wang B; Pan T; Zhang Y; Liu D; Jiang J; Zhao H; Gao F
    Opt Express; 2019 Feb; 27(3):3229-3246. PubMed ID: 30732347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sparsity-regularized approaches to directly reconstructing hemodynamic response in brain functional diffuse optical tomography.
    Wang B; Zhang Y; Liu D; Ding X; Dan M; Pan T; Zhao H; Gao F
    Appl Opt; 2019 Feb; 58(4):863-870. PubMed ID: 30874130
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimizing the regularization for image reconstruction of cerebral diffuse optical tomography.
    Habermehl C; Steinbrink J; Müller KR; Haufe S
    J Biomed Opt; 2014 Sep; 19(9):96006. PubMed ID: 25208243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast imaging of high-resolution two-dimensional effective attenuation profile from diffuse reflectance.
    Tse J; Chen LK
    J Biomed Opt; 2012 Apr; 17(4):046005. PubMed ID: 22559683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bayesian Framework Based Direct Reconstruction of Fluorescence Parametric Images.
    Zhang G; Pu H; He W; Liu F; Luo J; Bai J
    IEEE Trans Med Imaging; 2015 Jun; 34(6):1378-91. PubMed ID: 25622312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Data-resolution based optimization of the data-collection strategy for near infrared diffuse optical tomography.
    Karkala D; Yalavarthy PK
    Med Phys; 2012 Aug; 39(8):4715-25. PubMed ID: 22894396
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model-resolution-based basis pursuit deconvolution improves diffuse optical tomographic imaging.
    Prakash J; Dehghani H; Pogue BW; Yalavarthy PK
    IEEE Trans Med Imaging; 2014 Apr; 33(4):891-901. PubMed ID: 24710158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A New Method Based on Graphics Processing Units for Fast Near-Infrared Optical Tomography.
    Jiang J; Ahnen L; Kalyanov A; Lindner S; Wolf M; Majos SS
    Adv Exp Med Biol; 2017; 977():191-197. PubMed ID: 28685445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combining energy and Laplacian regularization to accurately retrieve the depth of brain activity of diffuse optical tomographic data.
    Chiarelli AM; Maclin EL; Low KA; Mathewson KE; Fabiani M; Gratton G
    J Biomed Opt; 2016 Mar; 21(3):36008. PubMed ID: 26987429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct reconstruction in CT-analogous pharmacokinetic diffuse fluorescence tomography: two-dimensional simulative and experimental validations.
    Wang X; Zhang Y; Zhang L; Li J; Zhou Z; Zhao H; Gao F
    J Biomed Opt; 2016 Apr; 21(4):46007. PubMed ID: 27093958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconstructing functional near-infrared spectroscopy (fNIRS) signals impaired by extra-cranial confounds: an easy-to-use filter method.
    Haeussinger FB; Dresler T; Heinzel S; Schecklmann M; Fallgatter AJ; Ehlis AC
    Neuroimage; 2014 Jul; 95():69-79. PubMed ID: 24657779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and evaluation of a miniature probe integrating diffuse optical tomography and electroencephalographic source localization.
    Yang H; Jiang H
    Appl Opt; 2013 Jul; 52(20):5036-41. PubMed ID: 23852220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discrimination of Complex Activation Patterns in Near Infrared Optical Tomography with Artificial Neural Networks.
    Jiang J; Ahnen L; Lindner S; Di Costanzo Mata A; Kalyanov A; Scholkmann F; Wolf M; Sánchez Majos S
    Adv Exp Med Biol; 2018; 1072():313-318. PubMed ID: 30178364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial-frequency-compression scheme for diffuse optical tomography with dense sampling dataset.
    Zhou X; Fan Y; Hou Q; Zhao H; Gao F
    Appl Opt; 2013 Mar; 52(9):1779-92. PubMed ID: 23518718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An L
    Wang B; Wan W; Wang Y; Ma W; Zhang L; Li J; Zhou Z; Zhao H; Gao F
    Biomed Eng Online; 2017 Mar; 16(1):32. PubMed ID: 28253881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid convergence to the inverse solution regularized with Lorentzian distributed function for near-infrared continuous wave diffuse optical tomography.
    Pan MC; Pan MC
    J Biomed Opt; 2010; 15(1):016014. PubMed ID: 20210460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-subject and multi-task experimental validation of the hierarchical Bayesian diffuse optical tomography algorithm.
    Yamashita O; Shimokawa T; Aisu R; Amita T; Inoue Y; Sato MA
    Neuroimage; 2016 Jul; 135():287-99. PubMed ID: 27150232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonquadratic penalization improves near-infrared diffuse optical tomography.
    Jagannath RP; Yalavarthy PK
    J Opt Soc Am A Opt Image Sci Vis; 2013 Aug; 30(8):1516-23. PubMed ID: 24323209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 4-D reconstruction for dynamic fluorescence diffuse optical tomography.
    Liu X; Zhang B; Luo J; Bai J
    IEEE Trans Med Imaging; 2012 Nov; 31(11):2120-32. PubMed ID: 22910097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconstruction of high-resolution early-photon tomography based on the first derivative of temporal point spread function.
    Cheng J; Cai C; Luo J
    J Biomed Opt; 2018 Jun; 23(6):1-4. PubMed ID: 29943525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.