These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 30732374)

  • 41. Generation of tunable subpicosecond pulses using low-Q dye cavities.
    Hung ND; Plaza P; Martin M; Meyer YH
    Appl Opt; 1992 Nov; 31(33):7046-58. PubMed ID: 20802566
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Programmable pulse synthesizer for the generation of Joule-level picosecond laser pulses of arbitrary shape.
    Yin L; Wang H; Reagan BA; Rocca JJ
    Opt Express; 2019 Nov; 27(24):35325-35335. PubMed ID: 31878703
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A simple, compact, and efficient diode-side-pumped linear intracavity frequency doubled Nd:YAG rod laser with 50 ns pulse width and 124 W green output power.
    Sharma SK; Mukhopadhyay PK; Singh A; Kandasamy R; Oak SM
    Rev Sci Instrum; 2010 Jul; 81(7):073104. PubMed ID: 20687702
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nd:YAG single-crystal fiber as high peak power amplifier of pulses below one nanosecond.
    Martial I; Balembois F; Didierjean J; Georges P
    Opt Express; 2011 Jun; 19(12):11667-79. PubMed ID: 21716399
    [TBL] [Abstract][Full Text] [Related]  

  • 45. High-energy, high-repetition-rate picosecond pulses from a quasi-CW diode-pumped Nd:YAG system.
    Noom DW; Witte S; Morgenweg J; Altmann RK; Eikema KS
    Opt Lett; 2013 Aug; 38(16):3021-3. PubMed ID: 24104637
    [TBL] [Abstract][Full Text] [Related]  

  • 46. High-energy sub-phonon lifetime pulse compression by stimulated Brillouin scattering in liquids.
    Feng C; Xu X; Diels JC
    Opt Express; 2017 May; 25(11):12421-12434. PubMed ID: 28786598
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Performance enhancement of sub-nanosecond diode-pumped passively Q-switched Yb:YAG microchip laser with diamond surface cooling.
    Zhuang WZ; Chen YF; Su KW; Huang KF; Chen YF
    Opt Express; 2012 Sep; 20(20):22602-8. PubMed ID: 23037409
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Vacuum-cored hollow waveguide for transmission of high-energy, nanosecond Nd:YAG laser pulses and its application to biological tissue ablation.
    Sato S; Ashida H; Arai T; Shi YW; Matsuura Y; Miyagi M
    Opt Lett; 2000 Jan; 25(1):49-51. PubMed ID: 18059778
    [TBL] [Abstract][Full Text] [Related]  

  • 49. High-power nanosecond ytterbium-doped fiber laser passively synchronized with a femtosecond Ti:sapphire laser.
    Yan M; Li W; Hao Q; Li Y; Yang K; Zhou H; Zeng H
    Opt Lett; 2009 Nov; 34(21):3331-3. PubMed ID: 19881584
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Picosecond tunable gain-switched blue pulses from GaN laser diodes with nanosecond current injections.
    Chen S; Nakamura T; Ito T; Bao X; Nakamae H; Weng G; Hu X; Yoshita M; Akiyama H; Liu J; Ikeda M; Yang H
    Opt Express; 2017 Jun; 25(12):13046-13054. PubMed ID: 28788844
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Nanosecond pulse lasers for retinal applications.
    Wood JP; Plunkett M; Previn V; Chidlow G; Casson RJ
    Lasers Surg Med; 2011 Aug; 43(6):499-510. PubMed ID: 21761420
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Frequency-doubled and Q-switched 946-nm Nd:YAG laser pumped by a diode-laser array.
    Hong J; Sinclair BD; Sibbett W; Dunn MH
    Appl Opt; 1992 Mar; 31(9):1318-21. PubMed ID: 20720761
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Guided continuous-wave and graphene-based Q-switched lasers in carbon ion irradiated Nd:YAG ceramic channel waveguide.
    Tan Y; Akhmadaliev S; Zhou S; Sun S; Chen F
    Opt Express; 2014 Feb; 22(3):3572-7. PubMed ID: 24663647
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Short-pulse actively Q-switched Er:YAG lasers.
    Ottaway DJ; Harris L; Veitch PJ
    Opt Express; 2016 Jul; 24(14):15341-50. PubMed ID: 27410810
    [TBL] [Abstract][Full Text] [Related]  

  • 55. High-energy Nd:YAG laser system with arbitrary sub-nanosecond pulse shaping capability.
    Meijer RA; Stodolna AS; Eikema KSE; Witte S
    Opt Lett; 2017 Jul; 42(14):2758-2761. PubMed ID: 28708162
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Q-switched pulse laser generation from double-cladding Nd:YAG ceramics waveguides.
    Tan Y; Luan Q; Liu F; Chen F; Vázquez de Aldana JR
    Opt Express; 2013 Aug; 21(16):18963-8. PubMed ID: 23938810
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Generation of tunable narrow bandwidth nanosecond pulses in the deep ultraviolet for efficient optical pumping and high resolution spectroscopy.
    Velarde L; Engelhart DP; Matsiev D; LaRue J; Auerbach DJ; Wodtke AM
    Rev Sci Instrum; 2010 Jun; 81(6):063106. PubMed ID: 20590224
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Synchronization of pairs of nanosecond pulses from a laser with two gain crystals pumped with two different sources.
    Staufert D; Cudney RS
    Appl Opt; 2018 May; 57(14):3947-3952. PubMed ID: 29791364
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Paradoxical darkening of unperceived tattoo ink after relatively low fluence from a Q-switched Nd:YAG (1064-nm) laser in the course of treatment for melasma.
    Chung WK; Yang JH; Lee DW; Chang SE; Lee MW; Choi JH; Moon KC
    Clin Exp Dermatol; 2009 Dec; 34(8):e555-7. PubMed ID: 19486060
    [TBL] [Abstract][Full Text] [Related]  

  • 60. High beam quality and high peak power Yb:YAG/Cr:YAG microchip laser.
    Guo X; Tokita S; Kawanaka J
    Opt Express; 2019 Jan; 27(1):45-54. PubMed ID: 30645357
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.