These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 30732419)

  • 1. Suspension cultured transgenic cells of Nicotiana tabacum expressing tryptophan decarboxylase and strictosidine synthase cDNAs from Catharanthus roseus produce strictosidine upon secologanin feeding.
    Hallard D; van der Heijden R; Verpoorte R; Cardoso MIL; Pasquali G; Memelink J; Hoge JHC
    Plant Cell Rep; 1997 Nov; 17(1):50-54. PubMed ID: 30732419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression of enzymatically active and correctly targeted strictosidine synthase in transgenic tobacco plants.
    McKnight TD; Bergey DR; Burnett RJ; Nessler CL
    Planta; 1991 Sep; 185(2):148-52. PubMed ID: 24186336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subcellular localization of tryptophan decarboxylase, strictosidine synthase and strictosidine glucosidase in suspension cultured cells of Catharanthus roseus and Tabernaemontana divaricata.
    Stevens LH; Blom TJ; Verpoorte R
    Plant Cell Rep; 1993 Aug; 12(10):573-6. PubMed ID: 24201788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biotransformation of tryptamine and secologanin into plant terpenoid indole alkaloids by transgenic yeast.
    Geerlings A; Redondo FJ; Contin A; Memelink J; van der Heijden R; Verpoorte R
    Appl Microbiol Biotechnol; 2001 Aug; 56(3-4):420-4. PubMed ID: 11549013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of Precursor Availability on Alkaloid Accumulation by Transgenic Cell Line of Catharanthus roseus.
    Whitmer S; Canel C; Hallard D; Gonçalves C; Verpoorte R
    Plant Physiol; 1998 Feb; 116(2):853-7. PubMed ID: 9490777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of precursor feeding on alkaloid accumulation by a tryptophan decarboxylase over-expressing transgenic cell line T22 of Catharanthus roseus.
    Whitmer S; van der Heijden R; Verpoorte R
    J Biotechnol; 2002 Jun; 96(2):193-203. PubMed ID: 12039535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Secondary metabolite biosynthesis in cultured cells of Catharanthus roseus (L.) G. Don immobilized by adhesion to glass fibres.
    Facchini PJ; DiCosmo F
    Appl Microbiol Biotechnol; 1991 Jun; 35(3):382-92. PubMed ID: 1367318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elicitor-mediated induction of tryptophan decarboxylase and strictosidine synthase activities in cell suspension cultures of Catharanthus roseus.
    Eilert U; De Luca V; Constabel F; Kurz WG
    Arch Biochem Biophys; 1987 May; 254(2):491-7. PubMed ID: 3579315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of the Arabidopsis feedback-insensitive anthranilate synthase holoenzyme and tryptophan decarboxylase genes in Catharanthus roseus hairy roots.
    Hong SB; Peebles CA; Shanks JV; San KY; Gibson SI
    J Biotechnol; 2006 Mar; 122(1):28-38. PubMed ID: 16188339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The subcellular organization of strictosidine biosynthesis in Catharanthus roseus epidermis highlights several trans-tonoplast translocations of intermediate metabolites.
    Guirimand G; Guihur A; Ginis O; Poutrain P; Héricourt F; Oudin A; Lanoue A; St-Pierre B; Burlat V; Courdavault V
    FEBS J; 2011 Mar; 278(5):749-63. PubMed ID: 21205206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of over-expression of strictosidine synthase and tryptophan decarboxylase on alkaloid production by cell cultures of Catharanthus roseus.
    Canel C; Lopes-Cardoso MI; Whitmer S; van der Fits L; Pasquali G; van der Heijden R; Hoge JH; Verpoorte R
    Planta; 1998 Jul; 205(3):414-9. PubMed ID: 9640666
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alkaloid production by a Cinchona officinalis 'Ledgeriana' hairy root culture containing constitutive expression constructs of tryptophan decarboxylase and strictosidine synthase cDNAs from Catharanthus roseus.
    Geerlings A; Hallard D; Martinez Caballero A; Lopes Cardoso I; van der Heijden R; Verpoorte R
    Plant Cell Rep; 1999 Dec; 19(2):191-196. PubMed ID: 30754747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overexpression of tryptophan decarboxylase and strictosidine synthase enhanced terpenoid indole alkaloid pathway activity and antineoplastic vinblastine biosynthesis in Catharanthus roseus.
    Sharma A; Verma P; Mathur A; Mathur AK
    Protoplasma; 2018 Sep; 255(5):1281-1294. PubMed ID: 29508069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-Course Studies in Indole Alkaloid Accumulation and Changes in Tryptophan Decarboxylase and Strictosidine Synthase Activities: A Comparison in Three Strains of Catharanthus roseus Cells.
    Doireau P; Meriollon JM; Guillot A; Rideau M; Chenieux JC; Brillard M
    Planta Med; 1987 Aug; 53(4):364-7. PubMed ID: 17269044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purification and properties of strictosidine synthetase (an enzyme condensing tryptamine and secologanin) from Catharanthus roseus cultured cells.
    Mizukami H; Nordlöv H; Lee SL; Scott AI
    Biochemistry; 1979 Aug; 18(17):3760-3. PubMed ID: 476085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Precursor feeding studies and molecular characterization of geraniol synthase establish the limiting role of geraniol in monoterpene indole alkaloid biosynthesis in Catharanthus roseus leaves.
    Kumar K; Kumar SR; Dwivedi V; Rai A; Shukla AK; Shanker K; Nagegowda DA
    Plant Sci; 2015 Oct; 239():56-66. PubMed ID: 26398791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assay of strictosidine synthase from plant cell cultures by high-performance liquid chromatography.
    Pennings EJ; van den Bosch RA; van der Heijden R; Stevens LH; Duine JA; Verpoorte R
    Anal Biochem; 1989 Feb; 176(2):412-5. PubMed ID: 2742131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Advance in biosynthesis of terpenoid indole alkaloids and its regulation in Catharanthus roseus].
    Kuang XJ; Wang CX; Zou LQ; Zhu XX; Sun C
    Zhongguo Zhong Yao Za Zhi; 2016 Nov; 41(22):4129-4137. PubMed ID: 28933078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transient induction of tryptophan decarboxylase (TDC) and strictosidine synthase (SS) genes in cell suspension cultures of Catharanthus roseus.
    Roewer IA; Cloutier N; Nessler CL; De Luca V
    Plant Cell Rep; 1992 Mar; 11(2):86-9. PubMed ID: 24213491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Purification and properties of strictosidine synthase, the key enzyme in indole alkaloid formation.
    Treimer JF; Zenk MH
    Eur J Biochem; 1979 Nov; 101(1):225-33. PubMed ID: 510306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.