BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 30732596)

  • 1. Tailoring the properties of (catalytically)-active inclusion bodies.
    Jäger VD; Kloss R; Grünberger A; Seide S; Hahn D; Karmainski T; Piqueray M; Embruch J; Longerich S; Mackfeld U; Jaeger KE; Wiechert W; Pohl M; Krauss U
    Microb Cell Fact; 2019 Feb; 18(1):33. PubMed ID: 30732596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytically Active Inclusion Bodies─Benchmarking and Application in Flow Chemistry.
    Ölçücü G; Baumer B; Küsters K; Möllenhoff K; Oldiges M; Pietruszka J; Jaeger KE; Krauss U
    ACS Synth Biol; 2022 May; 11(5):1881-1896. PubMed ID: 35500299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalytically-active inclusion bodies-Carrier-free protein immobilizates for application in biotechnology and biomedicine.
    Krauss U; Jäger VD; Diener M; Pohl M; Jaeger KE
    J Biotechnol; 2017 Sep; 258():136-147. PubMed ID: 28465211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design, Production, and Characterization of Catalytically Active Inclusion Bodies.
    Ölçücü G; Jaeger KE; Krauss U
    Methods Mol Biol; 2023; 2617():49-74. PubMed ID: 36656516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytically-active inclusion bodies for biotechnology-general concepts, optimization, and application.
    Jäger VD; Lamm R; Küsters K; Ölçücü G; Oldiges M; Jaeger KE; Büchs J; Krauss U
    Appl Microbiol Biotechnol; 2020 Sep; 104(17):7313-7329. PubMed ID: 32651598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction and comprehensive characterization of an EcLDCc-CatIB set-varying linkers and aggregation inducing tags.
    Küsters K; Pohl M; Krauss U; Ölçücü G; Albert S; Jaeger KE; Wiechert W; Oldiges M
    Microb Cell Fact; 2021 Feb; 20(1):49. PubMed ID: 33596923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction and characterization of BsGDH-CatIB variants and application as robust and highly active redox cofactor regeneration module for biocatalysis.
    Küsters K; Saborowski R; Wagner C; Hamel R; Spöring JD; Wiechert W; Oldiges M
    Microb Cell Fact; 2022 Jun; 21(1):108. PubMed ID: 35655182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. "High-throughput screening of catalytically active inclusion bodies using laboratory automation and Bayesian optimization".
    Helleckes LM; Küsters K; Wagner C; Hamel R; Saborowski R; Marienhagen J; Wiechert W; Oldiges M
    Microb Cell Fact; 2024 Feb; 23(1):67. PubMed ID: 38402403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Synthetic Reaction Cascade Implemented by Colocalization of Two Proteins within Catalytically Active Inclusion Bodies.
    Jäger VD; Lamm R; Kloß R; Kaganovitch E; Grünberger A; Pohl M; Büchs J; Jaeger KE; Krauss U
    ACS Synth Biol; 2018 Sep; 7(9):2282-2295. PubMed ID: 30053372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of active inclusion bodies induced by hydrophobic self-assembling peptide GFIL8.
    Wang X; Zhou B; Hu W; Zhao Q; Lin Z
    Microb Cell Fact; 2015 Jun; 14():88. PubMed ID: 26077447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioengineering toward direct production of immobilized enzymes: A paradigm shift in biocatalyst design.
    Rehm FBH; Chen S; Rehm BHA
    Bioengineered; 2018 Jan; 9(1):6-11. PubMed ID: 28463573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzyme Engineering for In Situ Immobilization.
    Rehm FB; Chen S; Rehm BH
    Molecules; 2016 Oct; 21(10):. PubMed ID: 27754434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermostable adenosine 5'-monophosphate phosphorylase from Thermococcus kodakarensis forms catalytically active inclusion bodies.
    Kamel S; Walczak MC; Kaspar F; Westarp S; Neubauer P; Kurreck A
    Sci Rep; 2021 Aug; 11(1):16880. PubMed ID: 34413335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative study of the insoluble and soluble Ulp1 protease constructs as Carrier free and dependent protein immobilizates.
    Jiang L; Xiao W; Zhou X; Wang W; Fan J
    J Biosci Bioeng; 2019 Jan; 127(1):23-29. PubMed ID: 30001877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytically active inclusion bodies as a potential tool for biotechnology.
    Bello MN; Sabri S; Mohd Yahaya N; Mohd Shariff F; Mohamad Ali MS
    Biotechnol Appl Biochem; 2024 Jun; ():. PubMed ID: 38863240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SpyTag/Catcher chemistry induces the formation of active inclusion bodies in E. coli.
    Dong W; Sun H; Chen Q; Hou L; Chang Y; Luo H
    Int J Biol Macromol; 2022 Feb; 199():358-371. PubMed ID: 35031313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytically active inclusion bodies (CatIBs) induced by terminally attached self-assembling coiled-coil domains: To enhance the stability of (R)-hydroxynitrile lyase.
    Pei X; Wang J; Zheng H; Xiao Q; Wang A; Su W
    Enzyme Microb Technol; 2022 Jan; 153():109915. PubMed ID: 34670185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring the use of leucine zippers for the generation of a new class of inclusion bodies for pharma and biotechnological applications.
    Roca-Pinilla R; Fortuna S; Natalello A; Sánchez-Chardi A; Ami D; Arís A; Garcia-Fruitós E
    Microb Cell Fact; 2020 Sep; 19(1):175. PubMed ID: 32887587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupled reactions on bioparticles: Stereoselective reduction with cofactor regeneration on PhaC inclusion bodies.
    Spieler V; Valldorf B; Maaß F; Kleinschek A; Hüttenhain SH; Kolmar H
    Biotechnol J; 2016 Jul; 11(7):890-8. PubMed ID: 26901842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A variant of green fluorescent protein exclusively deposited to active intracellular inclusion bodies.
    Raghunathan G; Munussami G; Moon H; Paik HJ; An SS; Kim YS; Kang S; Lee SG
    Microb Cell Fact; 2014 May; 13():68. PubMed ID: 24885571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.