These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 30732651)
21. Biosensor for branched-chain amino acid metabolism in yeast and applications in isobutanol and isopentanol production. Zhang Y; Cortez JD; Hammer SK; Carrasco-López C; García Echauri SÁ; Wiggins JB; Wang W; Avalos JL Nat Commun; 2022 Jan; 13(1):270. PubMed ID: 35022416 [TBL] [Abstract][Full Text] [Related]
22. High-flux isobutanol production using engineered Escherichia coli: a bioreactor study with in situ product removal. Baez A; Cho KM; Liao JC Appl Microbiol Biotechnol; 2011 Jun; 90(5):1681-90. PubMed ID: 21547458 [TBL] [Abstract][Full Text] [Related]
23. Improving isobutanol production in metabolically engineered Escherichia coli by co-producing ethanol and modulation of pentose phosphate pathway. Liu Z; Liu P; Xiao D; Zhang X J Ind Microbiol Biotechnol; 2016 Jun; 43(6):851-60. PubMed ID: 26946319 [TBL] [Abstract][Full Text] [Related]
24. Metabolic engineering of Saccharomyces cerevisiae for the production of isobutanol and 3-methyl-1-butanol. Park SH; Kim S; Hahn JS Appl Microbiol Biotechnol; 2014 Nov; 98(21):9139-47. PubMed ID: 25280745 [TBL] [Abstract][Full Text] [Related]
25. Rational design of a synthetic Entner-Doudoroff pathway for enhancing glucose transformation to isobutanol in Escherichia coli. Liang S; Chen H; Liu J; Wen J J Ind Microbiol Biotechnol; 2018 Mar; 45(3):187-199. PubMed ID: 29380153 [TBL] [Abstract][Full Text] [Related]
26. Secretion of 2,3-dihydroxyisovalerate as a limiting factor for isobutanol production in Saccharomyces cerevisiae. Generoso WC; Brinek M; Dietz H; Oreb M; Boles E FEMS Yeast Res; 2017 May; 17(3):. PubMed ID: 28505306 [TBL] [Abstract][Full Text] [Related]
27. Model-driven redox pathway manipulation for improved isobutanol production in Bacillus subtilis complemented with experimental validation and metabolic profiling analysis. Qi H; Li S; Zhao S; Huang D; Xia M; Wen J PLoS One; 2014; 9(4):e93815. PubMed ID: 24705866 [TBL] [Abstract][Full Text] [Related]
28. An evolutionary strategy for isobutanol production strain development in Escherichia coli. Smith KM; Liao JC Metab Eng; 2011 Nov; 13(6):674-81. PubMed ID: 21911074 [TBL] [Abstract][Full Text] [Related]
29. Metabolic engineering of Escherichia coli W for isobutanol production on chemically defined medium and cheese whey as alternative raw material. Novak K; Baar J; Freitag P; Pflügl S J Ind Microbiol Biotechnol; 2020 Dec; 47(12):1117-1132. PubMed ID: 33068182 [TBL] [Abstract][Full Text] [Related]
30. Rational improvement of the engineered isobutanol-producing Bacillus subtilis by elementary mode analysis. Li S; Huang D; Li Y; Wen J; Jia X Microb Cell Fact; 2012 Aug; 11():101. PubMed ID: 22862776 [TBL] [Abstract][Full Text] [Related]
31. Isobutanol production from an engineered Shewanella oneidensis MR-1. Jeon JM; Park H; Seo HM; Kim JH; Bhatia SK; Sathiyanarayanan G; Song HS; Park SH; Choi KY; Sang BI; Yang YH Bioprocess Biosyst Eng; 2015 Nov; 38(11):2147-54. PubMed ID: 26280214 [TBL] [Abstract][Full Text] [Related]
32. Enhancing E. coli isobutanol tolerance through engineering its global transcription factor cAMP receptor protein (CRP). Chong H; Geng H; Zhang H; Song H; Huang L; Jiang R Biotechnol Bioeng; 2014 Apr; 111(4):700-8. PubMed ID: 24203355 [TBL] [Abstract][Full Text] [Related]
33. Eliminating the isoleucine biosynthetic pathway to reduce competitive carbon outflow during isobutanol production by Saccharomyces cerevisiae. Ida K; Ishii J; Matsuda F; Kondo T; Kondo A Microb Cell Fact; 2015 Apr; 14():62. PubMed ID: 25925006 [TBL] [Abstract][Full Text] [Related]
34. Activation of alternative metabolic pathways diverts carbon flux away from isobutanol formation in an engineered Escherichia coli strain. Deb SS; Reshamwala SMS; Lali AM Biotechnol Lett; 2019 Jul; 41(6-7):823-836. PubMed ID: 31093837 [TBL] [Abstract][Full Text] [Related]
35. Isobutanol production in engineered Saccharomyces cerevisiae by overexpression of 2-ketoisovalerate decarboxylase and valine biosynthetic enzymes. Lee WH; Seo SO; Bae YH; Nan H; Jin YS; Seo JH Bioprocess Biosyst Eng; 2012 Nov; 35(9):1467-75. PubMed ID: 22543927 [TBL] [Abstract][Full Text] [Related]
36. Integration of ARTP mutagenesis with biosensor-mediated high-throughput screening to improve L-serine yield in Corynebacterium glutamicum. Zhang X; Zhang X; Xu G; Zhang X; Shi J; Xu Z Appl Microbiol Biotechnol; 2018 Jul; 102(14):5939-5951. PubMed ID: 29725721 [TBL] [Abstract][Full Text] [Related]
37. Increased isobutanol production in Saccharomyces cerevisiae by eliminating competing pathways and resolving cofactor imbalance. Matsuda F; Ishii J; Kondo T; Ida K; Tezuka H; Kondo A Microb Cell Fact; 2013 Dec; 12():119. PubMed ID: 24305546 [TBL] [Abstract][Full Text] [Related]
38. OptSSeq explores enzyme expression and function landscapes to maximize isobutanol production rate. Ghosh IN; Martien J; Hebert AS; Zhang Y; Coon JJ; Amador-Noguez D; Landick R Metab Eng; 2019 Mar; 52():324-340. PubMed ID: 30594629 [TBL] [Abstract][Full Text] [Related]