These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 30732651)
41. Genetic engineering to alter carbon flux for various higher alcohol productions by Saccharomyces cerevisiae for Chinese Baijiu fermentation. Li W; Chen SJ; Wang JH; Zhang CY; Shi Y; Guo XW; Chen YF; Xiao DG Appl Microbiol Biotechnol; 2018 Feb; 102(4):1783-1795. PubMed ID: 29305698 [TBL] [Abstract][Full Text] [Related]
42. Design of a genetically encoded biosensor to establish a high-throughput screening platform for L-cysteine overproduction. Gao J; Du M; Zhao J; Yue Zhang ; Xu N; Du H; Ju J; Wei L; Liu J Metab Eng; 2022 Sep; 73():144-157. PubMed ID: 35921946 [TBL] [Abstract][Full Text] [Related]
43. Engineering a metabolic pathway for isobutanol biosynthesis in Bacillus subtilis. Jia X; Li S; Xie S; Wen J Appl Biochem Biotechnol; 2012 Sep; 168(1):1-9. PubMed ID: 21537892 [TBL] [Abstract][Full Text] [Related]
44. Metabolic engineering of Corynebacterium crenatium for enhancing production of higher alcohols. Su H; Lin J; Wang G Sci Rep; 2016 Dec; 6():39543. PubMed ID: 27996038 [TBL] [Abstract][Full Text] [Related]
45. Efficiently activated ε-poly-L-lysine production by multiple antibiotic-resistance mutations and acidic pH shock optimization in Streptomyces albulus. Wang L; Li S; Zhao J; Liu Y; Chen X; Tang L; Mao Z Microbiologyopen; 2019 May; 8(5):e00728. PubMed ID: 30298553 [TBL] [Abstract][Full Text] [Related]
46. Genetic engineering to enhance the Ehrlich pathway and alter carbon flux for increased isobutanol production from glucose by Saccharomyces cerevisiae. Kondo T; Tezuka H; Ishii J; Matsuda F; Ogino C; Kondo A J Biotechnol; 2012 May; 159(1-2):32-7. PubMed ID: 22342368 [TBL] [Abstract][Full Text] [Related]
48. Involvement of BmoR and BmoG in n-alkane metabolism in 'Pseudomonas butanovora'. Kurth EG; Doughty DM; Bottomley PJ; Arp DJ; Sayavedra-Soto LA Microbiology (Reading); 2008 Jan; 154(Pt 1):139-147. PubMed ID: 18174133 [TBL] [Abstract][Full Text] [Related]
49. Improvement of isobutanol production in Saccharomyces cerevisiae by increasing mitochondrial import of pyruvate through mitochondrial pyruvate carrier. Park SH; Kim S; Hahn JS Appl Microbiol Biotechnol; 2016 Sep; 100(17):7591-8. PubMed ID: 27225475 [TBL] [Abstract][Full Text] [Related]
50. Elucidation of Sequence-Function Relationships for an Improved Biobutanol Kim NM; Sinnott RW; Rothschild LN; Sandoval NR Front Bioeng Biotechnol; 2022; 10():821152. PubMed ID: 35265600 [TBL] [Abstract][Full Text] [Related]
51. Isobutanol production from cellobiose in Escherichia coli. Desai SH; Rabinovitch-Deere CA; Tashiro Y; Atsumi S Appl Microbiol Biotechnol; 2014 Apr; 98(8):3727-36. PubMed ID: 24430208 [TBL] [Abstract][Full Text] [Related]
52. Biosensor-guided improvements in salicylate production by recombinant Escherichia coli. Qian S; Li Y; Cirino PC Microb Cell Fact; 2019 Jan; 18(1):18. PubMed ID: 30696431 [TBL] [Abstract][Full Text] [Related]
53. Combinatorial metabolic engineering of industrial Gluconobacter oxydans DSM2343 for boosting 5-keto-D-gluconic acid accumulation. Yuan J; Wu M; Lin J; Yang L BMC Biotechnol; 2016 May; 16(1):42. PubMed ID: 27189063 [TBL] [Abstract][Full Text] [Related]
54. Biosensor-Based Multigene Pathway Optimization for Enhancing the Production of Glycolate. Xu S; Zhang L; Zhou S; Deng Y Appl Environ Microbiol; 2021 May; 87(12):e0011321. PubMed ID: 33837017 [TBL] [Abstract][Full Text] [Related]
55. Activating transhydrogenase and NAD kinase in combination for improving isobutanol production. Shi A; Zhu X; Lu J; Zhang X; Ma Y Metab Eng; 2013 Mar; 16():1-10. PubMed ID: 23246519 [TBL] [Abstract][Full Text] [Related]
56. Synthesis of isobutanol using acetate as sole carbon source in Escherichia coli. Gu P; Zhao S; Niu H; Li C; Jiang S; Zhou H; Li Q Microb Cell Fact; 2023 Sep; 22(1):196. PubMed ID: 37759284 [TBL] [Abstract][Full Text] [Related]
57. Elucidating and reprogramming Escherichia coli metabolisms for obligate anaerobic n-butanol and isobutanol production. Trinh CT Appl Microbiol Biotechnol; 2012 Aug; 95(4):1083-94. PubMed ID: 22678028 [TBL] [Abstract][Full Text] [Related]
58. High-throughput system for screening of Cephalosporin C high-yield strain by 48-deep-well microtiter plates. Tan J; Chu J; Hao Y; Guo Y; Zhuang Y; Zhang S Appl Biochem Biotechnol; 2013 Mar; 169(5):1683-95. PubMed ID: 23334835 [TBL] [Abstract][Full Text] [Related]
59. Engineering the carbon and redox metabolism of Paenibacillus polymyxa for efficient isobutanol production. Meliawati M; Volke DC; Nikel PI; Schmid J Microb Biotechnol; 2024 Mar; 17(3):e14438. PubMed ID: 38529712 [TBL] [Abstract][Full Text] [Related]
60. Increased isobutanol production in Saccharomyces cerevisiae by overexpression of genes in valine metabolism. Chen X; Nielsen KF; Borodina I; Kielland-Brandt MC; Karhumaa K Biotechnol Biofuels; 2011 Jul; 4():21. PubMed ID: 21798060 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]