These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
307 related articles for article (PubMed ID: 30732777)
1. Influence of nanocellulose on in vitro digestion of whey protein isolate. Liu L; Kong F Carbohydr Polym; 2019 Apr; 210():399-411. PubMed ID: 30732777 [TBL] [Abstract][Full Text] [Related]
2. In vitro investigation of the influence of nano-cellulose on starch and milk digestion and mineral adsorption. Liu L; Kong F Int J Biol Macromol; 2019 Sep; 137():1278-1285. PubMed ID: 31271795 [TBL] [Abstract][Full Text] [Related]
3. Characterization of lipid emulsions during in vitro digestion in the presence of three types of nanocellulose. Liu L; Kerr WL; Kong F J Colloid Interface Sci; 2019 Jun; 545():317-329. PubMed ID: 30897428 [TBL] [Abstract][Full Text] [Related]
4. Evaluating mucoadhesion properties of three types of nanocellulose in the gastrointestinal tract in vitro and ex vivo. Lin YJ; Shatkin JA; Kong F Carbohydr Polym; 2019 Apr; 210():157-166. PubMed ID: 30732748 [TBL] [Abstract][Full Text] [Related]
5. Modulating in vitro gastric digestion of emulsions using composite whey protein-cellulose nanocrystal interfaces. Sarkar A; Zhang S; Murray B; Russell JA; Boxal S Colloids Surf B Biointerfaces; 2017 Oct; 158():137-146. PubMed ID: 28688363 [TBL] [Abstract][Full Text] [Related]
6. Effect of rheological and structural properties of bacterial cellulose fibrils and whey protein biocomposites on electrosprayed food-grade particles. Paximada P; Kanavou E; Mandala IG Carbohydr Polym; 2020 Aug; 241():116319. PubMed ID: 32507207 [TBL] [Abstract][Full Text] [Related]
7. Effect of cellulose nanocrystals from sugarcane bagasse on whey protein isolate-based films. Sukyai P; Anongjanya P; Bunyahwuthakul N; Kongsin K; Harnkarnsujarit N; Sukatta U; Sothornvit R; Chollakup R Food Res Int; 2018 May; 107():528-535. PubMed ID: 29580516 [TBL] [Abstract][Full Text] [Related]
8. Heat-induced whey protein isolate gels improved by cellulose nanocrystals: Gelling properties and microstructure. Xiao Y; Liu Y; Wang Y; Jin Y; Guo X; Liu Y; Qi X; Lei H; Xu H Carbohydr Polym; 2020 Mar; 231():115749. PubMed ID: 31888844 [TBL] [Abstract][Full Text] [Related]
9. Six weeks effect of different nanocellulose on blood lipid level and small intestinal morphology in mice. Lin YJ; Chen Y; Guo TL; Kong F Int J Biol Macromol; 2023 Feb; 228():498-505. PubMed ID: 36563823 [TBL] [Abstract][Full Text] [Related]
10. Observation of curcumin-encapsulated Pickering emulsion stabilized by cellulose nanocrystals-whey protein isolate (CNCs-WPI) complex under in vitro lipid digestion through INFOGEST model. Chuesiang P; Kim JT; Shin GH Int J Biol Macromol; 2023 Apr; 234():123679. PubMed ID: 36801227 [TBL] [Abstract][Full Text] [Related]
11. Effect of depletion forces on the morphological structure of carboxymethyl cellulose and micro/nano cellulose fiber suspensions. Souza SF; Mariano M; De Farias MA; Bernardes JS J Colloid Interface Sci; 2019 Mar; 538():228-236. PubMed ID: 30513464 [TBL] [Abstract][Full Text] [Related]
12. Facile strategy for improvement properties of whey protein isolate/walnut oil bio-packaging films: Using modified cellulose nanofibers. Samadani F; Behzad T; Enayati MS Int J Biol Macromol; 2019 Oct; 139():858-866. PubMed ID: 31398405 [TBL] [Abstract][Full Text] [Related]
13. Effect of the oxidation treatment on the production of cellulose nanofiber suspensions from Posidonia oceanica: The rheological aspect. Bettaieb F; Nechyporchuk O; Khiari R; Mhenni MF; Dufresne A; Belgacem MN Carbohydr Polym; 2015 Dec; 134():664-72. PubMed ID: 26428170 [TBL] [Abstract][Full Text] [Related]
14. Impact of Interfacial Composition on Emulsion Digestion Using In Vitro and In Vivo Models. Malinauskytė E; Ramanauskaitė J; Keršienė M; Jasutienė I; Leskauskaitė D; Devold TG; Vegarud GE J Food Sci; 2018 Nov; 83(11):2850-2857. PubMed ID: 30336512 [TBL] [Abstract][Full Text] [Related]
15. Algal growth inhibition test with TEMPO-oxidized cellulose nanofibers. Tai R; Ogura I; Okazaki T; Iizumi Y; Mano H NanoImpact; 2024 Apr; 34():100504. PubMed ID: 38537806 [TBL] [Abstract][Full Text] [Related]
16. The resilience of nanocrystalline cellulose viscosity to simulated digestive processes and its influence on glucose diffusion. Nsor-Atindana J; Douglas Goff H; Liu W; Chen M; Zhong F Carbohydr Polym; 2018 Nov; 200():436-445. PubMed ID: 30177185 [TBL] [Abstract][Full Text] [Related]
17. Composite Gels Containing Whey Protein Fibrils and Bacterial Cellulose Microfibrils. Peng J; Calabrese V; Geurtz J; Velikov KP; Venema P; van der Linden E J Food Sci; 2019 May; 84(5):1094-1103. PubMed ID: 31038744 [TBL] [Abstract][Full Text] [Related]
18. Control of size and viscoelastic properties of nanofibrillated cellulose from palm tree by varying the TEMPO-mediated oxidation time. Benhamou K; Dufresne A; Magnin A; Mortha G; Kaddami H Carbohydr Polym; 2014 Jan; 99():74-83. PubMed ID: 24274481 [TBL] [Abstract][Full Text] [Related]
19. Characterization of Concentration-Dependent Gelation Behavior of Aqueous 2,2,6,6-Tetramethylpiperidine-1-oxyl-Cellulose Nanocrystal Dispersions Using Dynamic Light Scattering. Zhou Y; Fujisawa S; Saito T; Isogai A Biomacromolecules; 2019 Feb; 20(2):750-757. PubMed ID: 30557007 [TBL] [Abstract][Full Text] [Related]
20. Development of curcumin loaded core-shell zein microparticles stabilized by cellulose nanocrystals and whey protein microgels through interparticle interactions. Wei Y; Guo A; Liu Z; Zhang L; Liao W; Liu J; Mao L; Yuan F; Gao Y Food Funct; 2021 Aug; 12(15):6936-6949. PubMed ID: 34132729 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]