These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 30732826)

  • 21. Influence of cellulose nanocrystal addition on the production and characterization of bacterial nanocellulose.
    Bang WY; Adedeji OE; Kang HJ; Kang MD; Yang J; Lim YW; Jung YH
    Int J Biol Macromol; 2021 Dec; 193(Pt A):269-275. PubMed ID: 34695495
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nanocellulose as a sustainable biomass material: structure, properties, present status and future prospects in biomedical applications.
    Xue Y; Mou Z; Xiao H
    Nanoscale; 2017 Oct; 9(39):14758-14781. PubMed ID: 28967940
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The biopolymer bacterial nanocellulose as drug delivery system: investigation of drug loading and release using the model protein albumin.
    Müller A; Ni Z; Hessler N; Wesarg F; Müller FA; Kralisch D; Fischer D
    J Pharm Sci; 2013 Feb; 102(2):579-92. PubMed ID: 23192666
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biocompatibility evaluation of densified bacterial nanocellulose hydrogel as an implant material for auricular cartilage regeneration.
    Martínez Ávila H; Schwarz S; Feldmann EM; Mantas A; von Bomhard A; Gatenholm P; Rotter N
    Appl Microbiol Biotechnol; 2014 Sep; 98(17):7423-35. PubMed ID: 24866945
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bacterial nanocellulose as novel carrier for intestinal epithelial cells in drug delivery studies.
    Fey C; Betz J; Rosenbaum C; Kralisch D; Vielreicher M; Friedrich O; Metzger M; Zdzieblo D
    Mater Sci Eng C Mater Biol Appl; 2020 Apr; 109():110613. PubMed ID: 32228900
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Valorization of fruit processing waste to produce high value-added bacterial nanocellulose by a novel strain Komagataeibacter xylinus IITR DKH20.
    Khan H; Saroha V; Raghuvanshi S; Bharti AK; Dutt D
    Carbohydr Polym; 2021 May; 260():117807. PubMed ID: 33712153
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Controlled extended octenidine release from a bacterial nanocellulose/Poloxamer hybrid system.
    Alkhatib Y; Dewaldt M; Moritz S; Nitzsche R; Kralisch D; Fischer D
    Eur J Pharm Biopharm; 2017 Mar; 112():164-176. PubMed ID: 27889415
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Topical Drug Delivery Systems Based on Bacterial Nanocellulose: Accelerated Stability Testing.
    Silva NHCS; Mota JP; Almeida TS; Carvalho JPF; Silvestre AJD; Vilela C; Rosado C; Freire CSR
    Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32070054
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bacterial nanocellulose from agro-industrial wastes: low-cost and enhanced production by Komagataeibacter saccharivorans MD1.
    Abol-Fotouh D; Hassan MA; Shokry H; Roig A; Azab MS; Kashyout AEB
    Sci Rep; 2020 Feb; 10(1):3491. PubMed ID: 32103077
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanical evaluation of bacterial nanocellulose as an implant material for ear cartilage replacement.
    Nimeskern L; Martínez Ávila H; Sundberg J; Gatenholm P; Müller R; Stok KS
    J Mech Behav Biomed Mater; 2013 Jun; 22():12-21. PubMed ID: 23611922
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nanocarrier stimuli-activated gene delivery.
    Howard KA; Dong M; Oupicky D; Bisht HS; Buss C; Besenbacher F; Kjems J
    Small; 2007 Jan; 3(1):54-7. PubMed ID: 17294468
    [No Abstract]   [Full Text] [Related]  

  • 32. In situ synthesis of photocatalytically active hybrids consisting of bacterial nanocellulose and anatase nanoparticles.
    Wesarg F; Schlott F; Grabow J; Kurland HD; Heßler N; Kralisch D; Müller FA
    Langmuir; 2012 Sep; 28(37):13518-25. PubMed ID: 22925063
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Magnetically modified bacterial cellulose: A promising carrier for immobilization of affinity ligands, enzymes, and cells.
    Baldikova E; Pospiskova K; Ladakis D; Kookos IK; Koutinas AA; Safarikova M; Safarik I
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():214-221. PubMed ID: 27987701
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Self-assembled oligopeptide nanostructures for co-delivery of drug and gene with synergistic therapeutic effect.
    Wiradharma N; Tong YW; Yang YY
    Biomaterials; 2009 Jun; 30(17):3100-9. PubMed ID: 19342093
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Application of Bacterial Nanocellulose in Cancer Drug Delivery: A Review.
    Shahriari-Khalaji M; Zarkesh M; Nozhat Z
    Curr Pharm Des; 2021; 27(34):3656-3665. PubMed ID: 33845723
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cellular and Molecular Interaction of Human Dermal Fibroblasts with Bacterial Nanocellulose Composite Hydrogel for Tissue Regeneration.
    Xi Loh EY; Fauzi MB; Ng MH; Ng PY; Ng SF; Ariffin H; Mohd Amin MCI
    ACS Appl Mater Interfaces; 2018 Nov; 10(46):39532-39543. PubMed ID: 30372014
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Toward biomanufacturing of next-generation bacterial nanocellulose (BNC)-based materials with tailored properties: A review on genetic engineering approaches.
    Núñez D; Oyarzún P; González S; Martínez I
    Biotechnol Adv; 2024 Sep; 74():108390. PubMed ID: 38823654
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Three-dimensional functionalized tetrapod-like ZnO nanostructures for plasmid DNA delivery.
    Nie L; Gao L; Feng P; Zhang J; Fu X; Liu Y; Yan X; Wang T
    Small; 2006 May; 2(5):621-5. PubMed ID: 17193097
    [No Abstract]   [Full Text] [Related]  

  • 39. Bacterial cellulose hydrogel loaded with lipid nanoparticles for localized cancer treatment.
    Cacicedo ML; Islan GA; León IE; Álvarez VA; Chourpa I; Allard-Vannier E; García-Aranda N; Díaz-Riascos ZV; Fernández Y; Schwartz S; Abasolo I; Castro GR
    Colloids Surf B Biointerfaces; 2018 Oct; 170():596-608. PubMed ID: 29975908
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bacterial nanocellulose-IKVAV hydrogel matrix modulates melanoma tumor cell adhesion and proliferation and induces vasculogenic mimicry in vitro.
    Reis EMD; Berti FV; Colla G; Porto LM
    J Biomed Mater Res B Appl Biomater; 2018 Nov; 106(8):2741-2749. PubMed ID: 29206331
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.