BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 30732922)

  • 1. Actin-independent trafficking of cochlear connexin 26 to non-lipid raft gap junction plaques.
    Defourny J; Thelen N; Thiry M
    Hear Res; 2019 Mar; 374():69-75. PubMed ID: 30732922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cochlear connexin 30 homomeric and heteromeric channels exhibit distinct assembly mechanisms.
    Defourny J; Thelen N; Thiry M
    Mech Dev; 2019 Feb; 155():8-14. PubMed ID: 30296578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A deafness mechanism of digenic Cx26 (GJB2) and Cx30 (GJB6) mutations: Reduction of endocochlear potential by impairment of heterogeneous gap junctional function in the cochlear lateral wall.
    Mei L; Chen J; Zong L; Zhu Y; Liang C; Jones RO; Zhao HB
    Neurobiol Dis; 2017 Dec; 108():195-203. PubMed ID: 28823936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent insights into gap junction biogenesis in the cochlea.
    Defourny J; Thiry M
    Dev Dyn; 2023 Feb; 252(2):239-246. PubMed ID: 36106826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deficiency of transcription factor Brn4 disrupts cochlear gap junction plaques in a model of DFN3 non-syndromic deafness.
    Kidokoro Y; Karasawa K; Minowa O; Sugitani Y; Noda T; Ikeda K; Kamiya K
    PLoS One; 2014; 9(9):e108216. PubMed ID: 25259580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tricellular adherens junctions provide a cell surface delivery platform for connexin 26/30 oligomers in the cochlea.
    Defourny J; Thiry M
    Hear Res; 2021 Feb; 400():108137. PubMed ID: 33291008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assembly of the cochlear gap junction macromolecular complex requires connexin 26.
    Kamiya K; Yum SW; Kurebayashi N; Muraki M; Ogawa K; Karasawa K; Miwa A; Guo X; Gotoh S; Sugitani Y; Yamanaka H; Ito-Kawashima S; Iizuka T; Sakurai T; Noda T; Minowa O; Ikeda K
    J Clin Invest; 2014 Apr; 124(4):1598-607. PubMed ID: 24590285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of the cytoskeleton in the formation of gap junctions by Connexin 30.
    Qu C; Gardner P; Schrijver I
    Exp Cell Res; 2009 Jun; 315(10):1683-92. PubMed ID: 19285977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unique expression of connexins in the human cochlea.
    Liu W; Boström M; Kinnefors A; Rask-Andersen H
    Hear Res; 2009 Apr; 250(1-2):55-62. PubMed ID: 19450429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Connexin hemichannels and cochlear function.
    Verselis VK
    Neurosci Lett; 2019 Mar; 695():40-45. PubMed ID: 28917982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of Functional CX26-Gap-Junction-Plaque-Forming Cells with Spontaneous Ca
    Fukunaga I; Fujimoto A; Hatakeyama K; Kurebayashi N; Ikeda K; Kamiya K
    Curr Protoc Stem Cell Biol; 2019 Dec; 51(1):e100. PubMed ID: 31756039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Connexins 26 and 30 are co-assembled to form gap junctions in the cochlea of mice.
    Ahmad S; Chen S; Sun J; Lin X
    Biochem Biophys Res Commun; 2003 Jul; 307(2):362-8. PubMed ID: 12859965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of trafficking, stability and function of human connexin 26 gap junction channels with deafness-causing mutations in the fourth transmembrane helix.
    Ambrosi C; Walker AE; Depriest AD; Cone AC; Lu C; Badger J; Skerrett IM; Sosinsky GE
    PLoS One; 2013; 8(8):e70916. PubMed ID: 23967136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cochlear gap junctions coassembled from Cx26 and 30 show faster intercellular Ca2+ signaling than homomeric counterparts.
    Sun J; Ahmad S; Chen S; Tang W; Zhang Y; Chen P; Lin X
    Am J Physiol Cell Physiol; 2005 Mar; 288(3):C613-23. PubMed ID: 15692151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Vitro Models of GJB2-Related Hearing Loss Recapitulate Ca
    Fukunaga I; Fujimoto A; Hatakeyama K; Aoki T; Nishikawa A; Noda T; Minowa O; Kurebayashi N; Ikeda K; Kamiya K
    Stem Cell Reports; 2016 Dec; 7(6):1023-1036. PubMed ID: 27840044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling gap junction beta 2 gene-related deafness with human iPSC.
    Fukunaga I; Oe Y; Danzaki K; Ohta S; Chen C; Shirai K; Kawano A; Ikeda K; Kamiya K
    Hum Mol Genet; 2021 Jul; 30(15):1429-1442. PubMed ID: 33997905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Progressive age-dependence and frequency difference in the effect of gap junctions on active cochlear amplification and hearing.
    Zong L; Chen J; Zhu Y; Zhao HB
    Biochem Biophys Res Commun; 2017 Jul; 489(2):223-227. PubMed ID: 28552523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Digenic inheritance of non-syndromic deafness caused by mutations at the gap junction proteins Cx26 and Cx31.
    Liu XZ; Yuan Y; Yan D; Ding EH; Ouyang XM; Fei Y; Tang W; Yuan H; Chang Q; Du LL; Zhang X; Wang G; Ahmad S; Kang DY; Lin X; Dai P
    Hum Genet; 2009 Feb; 125(1):53-62. PubMed ID: 19050930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gap junction mediated intercellular metabolite transfer in the cochlea is compromised in connexin30 null mice.
    Chang Q; Tang W; Ahmad S; Zhou B; Lin X
    PLoS One; 2008; 3(12):e4088. PubMed ID: 19116647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Early developmental expression of connexin26 in the cochlea contributes to its dominate functional role in the cochlear gap junctions.
    Qu Y; Tang W; Zhou B; Ahmad S; Chang Q; Li X; Lin X
    Biochem Biophys Res Commun; 2012 Jan; 417(1):245-50. PubMed ID: 22142852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.