These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 30733194)

  • 1. Loss of FOXP3 and TSC1 Accelerates Prostate Cancer Progression through Synergistic Transcriptional and Posttranslational Regulation of c-MYC.
    Wu L; Yi B; Wei S; Rao D; He Y; Naik G; Bae S; Liu XM; Yang WH; Sonpavde G; Liu R; Wang L
    Cancer Res; 2019 Apr; 79(7):1413-1425. PubMed ID: 30733194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation of PP2A and Inhibition of mTOR Synergistically Reduce MYC Signaling and Decrease Tumor Growth in Pancreatic Ductal Adenocarcinoma.
    Allen-Petersen BL; Risom T; Feng Z; Wang Z; Jenny ZP; Thoma MC; Pelz KR; Morton JP; Sansom OJ; Lopez CD; Sheppard B; Christensen DJ; Ohlmeyer M; Narla G; Sears RC
    Cancer Res; 2019 Jan; 79(1):209-219. PubMed ID: 30389701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuberous sclerosis complex is required for tumor maintenance in MYC-driven Burkitt's lymphoma.
    Hartleben G; Müller C; Krämer A; Schimmel H; Zidek LM; Dornblut C; Winkler R; Eichwald S; Kortman G; Kosan C; Kluiver J; Petersen I; van den Berg A; Wang ZQ; Calkhoven CF
    EMBO J; 2018 Nov; 37(21):. PubMed ID: 30237309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential impact of PI3K/AKT/mTOR signaling on tumor initiation and progression in animal models of prostate cancer.
    Wang S; Zhang C; Xu Z; Chen MH; Yu H; Wang L; Liu R
    Prostate; 2023 Jan; 83(1):97-108. PubMed ID: 36164668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MYC cooperates with AKT in prostate tumorigenesis and alters sensitivity to mTOR inhibitors.
    Clegg NJ; Couto SS; Wongvipat J; Hieronymus H; Carver BS; Taylor BS; Ellwood-Yen K; Gerald WL; Sander C; Sawyers CL
    PLoS One; 2011 Mar; 6(3):e17449. PubMed ID: 21394210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-immunosuppressive triazole-based small molecule induces anticancer activity against human hormone-refractory prostate cancers: the role in inhibition of PI3K/AKT/mTOR and c-Myc signaling pathways.
    Leu WJ; Swain ShP; Chan SH; Hsu JL; Liu SP; Chan ML; Yu CC; Hsu LC; Chou YL; Chang WL; Hou DR; Guh JH
    Oncotarget; 2016 Nov; 7(47):76995-77009. PubMed ID: 27769069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Somatic single hits inactivate the X-linked tumor suppressor FOXP3 in the prostate.
    Wang L; Liu R; Li W; Chen C; Katoh H; Chen GY; McNally B; Lin L; Zhou P; Zuo T; Cooney KA; Liu Y; Zheng P
    Cancer Cell; 2009 Oct; 16(4):336-46. PubMed ID: 19800578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MYC activity mitigates response to rapamycin in prostate cancer through eukaryotic initiation factor 4E-binding protein 1-mediated inhibition of autophagy.
    Balakumaran BS; Porrello A; Hsu DS; Glover W; Foye A; Leung JY; Sullivan BA; Hahn WC; Loda M; Febbo PG
    Cancer Res; 2009 Oct; 69(19):7803-10. PubMed ID: 19773438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. R1 Regulates Prostate Tumor Growth and Progression By Transcriptional Suppression of the E3 Ligase HUWE1 to Stabilize c-Myc.
    Lin TP; Li J; Li Q; Li X; Liu C; Zeng N; Huang JM; Chu GC; Lin CH; Zhau HE; Chung LWK; Wu BJ; Shih JC
    Mol Cancer Res; 2018 Dec; 16(12):1940-1951. PubMed ID: 30042175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FOXP3-miR-146-NF-κB Axis and Therapy for Precancerous Lesions in Prostate.
    Liu R; Yi B; Wei S; Yang WH; Hart KM; Chauhan P; Zhang W; Mao X; Liu X; Liu CG; Wang L
    Cancer Res; 2015 Apr; 75(8):1714-24. PubMed ID: 25712341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The TSC1-mTOR-PLK axis regulates the homeostatic switch from Schwann cell proliferation to myelination in a stage-specific manner.
    Jiang M; Rao R; Wang J; Wang J; Xu L; Wu LM; Chan JR; Wang H; Lu QR
    Glia; 2018 Sep; 66(9):1947-1959. PubMed ID: 29722913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genistein represses telomerase activity via both transcriptional and posttranslational mechanisms in human prostate cancer cells.
    Jagadeesh S; Kyo S; Banerjee PP
    Cancer Res; 2006 Feb; 66(4):2107-15. PubMed ID: 16489011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MYC overexpression induces prostatic intraepithelial neoplasia and loss of Nkx3.1 in mouse luminal epithelial cells.
    Iwata T; Schultz D; Hicks J; Hubbard GK; Mutton LN; Lotan TL; Bethel C; Lotz MT; Yegnasubramanian S; Nelson WG; Dang CV; Xu M; Anele U; Koh CM; Bieberich CJ; De Marzo AM
    PLoS One; 2010 Feb; 5(2):e9427. PubMed ID: 20195545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deptor Is a Novel Target of Wnt/β-Catenin/c-Myc and Contributes to Colorectal Cancer Cell Growth.
    Wang Q; Zhou Y; Rychahou P; Harris JW; Zaytseva YY; Liu J; Wang C; Weiss HL; Liu C; Lee EY; Evers BM
    Cancer Res; 2018 Jun; 78(12):3163-3175. PubMed ID: 29666061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The PHLPP2 phosphatase is a druggable driver of prostate cancer progression.
    Nowak DG; Katsenelson KC; Watrud KE; Chen M; Mathew G; D'Andrea VD; Lee MF; Swamynathan MM; Casanova-Salas I; Jibilian MC; Buckholtz CL; Ambrico AJ; Pan CH; Wilkinson JE; Newton AC; Trotman LC
    J Cell Biol; 2019 Jun; 218(6):1943-1957. PubMed ID: 31092557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 5-Aza-2'-deoxycytidine increases hypoxia tolerance-dependent autophagy in mouse neuronal cells by initiating the TSC1/mTOR pathway.
    Qi R; Zhang X; Xie Y; Jiang S; Liu Y; Liu X; Xie W; Jia X; Bade R; Shi R; Li S; Ren C; Gong K; Zhang C; Shao G
    Biomed Pharmacother; 2019 Oct; 118():109219. PubMed ID: 31325707
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Umbreen S; Banday MM; Jamroze A; Mansini AP; Ganaie AA; Ferrari MG; Maqbool R; Beigh FH; Murugan P; Morrissey C; Corey E; Konety BR; Saleem M
    Mol Cancer Ther; 2019 Nov; 18(11):2111-2123. PubMed ID: 31467179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Concurrent nuclear ERG and MYC protein overexpression defines a subset of locally advanced prostate cancer: Potential opportunities for synergistic targeted therapeutics.
    Udager AM; DeMarzo AM; Shi Y; Hicks JL; Cao X; Siddiqui J; Jiang H; Chinnaiyan AM; Mehra R
    Prostate; 2016 Jun; 76(9):845-53. PubMed ID: 27159573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GLIPR1 suppresses prostate cancer development through targeted oncoprotein destruction.
    Li L; Ren C; Yang G; Fattah EA; Goltsov AA; Kim SM; Lee JS; Park S; Demayo FJ; Ittmann MM; Troncoso P; Thompson TC
    Cancer Res; 2011 Dec; 71(24):7694-704. PubMed ID: 22025562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AKT3 promotes prostate cancer proliferation cells through regulation of Akt, B-Raf, and TSC1/TSC2.
    Lin HP; Lin CY; Huo C; Jan YJ; Tseng JC; Jiang SS; Kuo YY; Chen SC; Wang CT; Chan TM; Liou JY; Wang J; Chang WS; Chang CH; Kung HJ; Chuu CP
    Oncotarget; 2015 Sep; 6(29):27097-112. PubMed ID: 26318033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.