BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 30733194)

  • 1. Loss of FOXP3 and TSC1 Accelerates Prostate Cancer Progression through Synergistic Transcriptional and Posttranslational Regulation of c-MYC.
    Wu L; Yi B; Wei S; Rao D; He Y; Naik G; Bae S; Liu XM; Yang WH; Sonpavde G; Liu R; Wang L
    Cancer Res; 2019 Apr; 79(7):1413-1425. PubMed ID: 30733194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation of PP2A and Inhibition of mTOR Synergistically Reduce MYC Signaling and Decrease Tumor Growth in Pancreatic Ductal Adenocarcinoma.
    Allen-Petersen BL; Risom T; Feng Z; Wang Z; Jenny ZP; Thoma MC; Pelz KR; Morton JP; Sansom OJ; Lopez CD; Sheppard B; Christensen DJ; Ohlmeyer M; Narla G; Sears RC
    Cancer Res; 2019 Jan; 79(1):209-219. PubMed ID: 30389701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuberous sclerosis complex is required for tumor maintenance in MYC-driven Burkitt's lymphoma.
    Hartleben G; Müller C; Krämer A; Schimmel H; Zidek LM; Dornblut C; Winkler R; Eichwald S; Kortman G; Kosan C; Kluiver J; Petersen I; van den Berg A; Wang ZQ; Calkhoven CF
    EMBO J; 2018 Nov; 37(21):. PubMed ID: 30237309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential impact of PI3K/AKT/mTOR signaling on tumor initiation and progression in animal models of prostate cancer.
    Wang S; Zhang C; Xu Z; Chen MH; Yu H; Wang L; Liu R
    Prostate; 2023 Jan; 83(1):97-108. PubMed ID: 36164668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MYC cooperates with AKT in prostate tumorigenesis and alters sensitivity to mTOR inhibitors.
    Clegg NJ; Couto SS; Wongvipat J; Hieronymus H; Carver BS; Taylor BS; Ellwood-Yen K; Gerald WL; Sander C; Sawyers CL
    PLoS One; 2011 Mar; 6(3):e17449. PubMed ID: 21394210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-immunosuppressive triazole-based small molecule induces anticancer activity against human hormone-refractory prostate cancers: the role in inhibition of PI3K/AKT/mTOR and c-Myc signaling pathways.
    Leu WJ; Swain ShP; Chan SH; Hsu JL; Liu SP; Chan ML; Yu CC; Hsu LC; Chou YL; Chang WL; Hou DR; Guh JH
    Oncotarget; 2016 Nov; 7(47):76995-77009. PubMed ID: 27769069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Somatic single hits inactivate the X-linked tumor suppressor FOXP3 in the prostate.
    Wang L; Liu R; Li W; Chen C; Katoh H; Chen GY; McNally B; Lin L; Zhou P; Zuo T; Cooney KA; Liu Y; Zheng P
    Cancer Cell; 2009 Oct; 16(4):336-46. PubMed ID: 19800578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MYC activity mitigates response to rapamycin in prostate cancer through eukaryotic initiation factor 4E-binding protein 1-mediated inhibition of autophagy.
    Balakumaran BS; Porrello A; Hsu DS; Glover W; Foye A; Leung JY; Sullivan BA; Hahn WC; Loda M; Febbo PG
    Cancer Res; 2009 Oct; 69(19):7803-10. PubMed ID: 19773438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. R1 Regulates Prostate Tumor Growth and Progression By Transcriptional Suppression of the E3 Ligase HUWE1 to Stabilize c-Myc.
    Lin TP; Li J; Li Q; Li X; Liu C; Zeng N; Huang JM; Chu GC; Lin CH; Zhau HE; Chung LWK; Wu BJ; Shih JC
    Mol Cancer Res; 2018 Dec; 16(12):1940-1951. PubMed ID: 30042175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FOXP3-miR-146-NF-κB Axis and Therapy for Precancerous Lesions in Prostate.
    Liu R; Yi B; Wei S; Yang WH; Hart KM; Chauhan P; Zhang W; Mao X; Liu X; Liu CG; Wang L
    Cancer Res; 2015 Apr; 75(8):1714-24. PubMed ID: 25712341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The TSC1-mTOR-PLK axis regulates the homeostatic switch from Schwann cell proliferation to myelination in a stage-specific manner.
    Jiang M; Rao R; Wang J; Wang J; Xu L; Wu LM; Chan JR; Wang H; Lu QR
    Glia; 2018 Sep; 66(9):1947-1959. PubMed ID: 29722913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genistein represses telomerase activity via both transcriptional and posttranslational mechanisms in human prostate cancer cells.
    Jagadeesh S; Kyo S; Banerjee PP
    Cancer Res; 2006 Feb; 66(4):2107-15. PubMed ID: 16489011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MYC overexpression induces prostatic intraepithelial neoplasia and loss of Nkx3.1 in mouse luminal epithelial cells.
    Iwata T; Schultz D; Hicks J; Hubbard GK; Mutton LN; Lotan TL; Bethel C; Lotz MT; Yegnasubramanian S; Nelson WG; Dang CV; Xu M; Anele U; Koh CM; Bieberich CJ; De Marzo AM
    PLoS One; 2010 Feb; 5(2):e9427. PubMed ID: 20195545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deptor Is a Novel Target of Wnt/β-Catenin/c-Myc and Contributes to Colorectal Cancer Cell Growth.
    Wang Q; Zhou Y; Rychahou P; Harris JW; Zaytseva YY; Liu J; Wang C; Weiss HL; Liu C; Lee EY; Evers BM
    Cancer Res; 2018 Jun; 78(12):3163-3175. PubMed ID: 29666061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The PHLPP2 phosphatase is a druggable driver of prostate cancer progression.
    Nowak DG; Katsenelson KC; Watrud KE; Chen M; Mathew G; D'Andrea VD; Lee MF; Swamynathan MM; Casanova-Salas I; Jibilian MC; Buckholtz CL; Ambrico AJ; Pan CH; Wilkinson JE; Newton AC; Trotman LC
    J Cell Biol; 2019 Jun; 218(6):1943-1957. PubMed ID: 31092557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 5-Aza-2'-deoxycytidine increases hypoxia tolerance-dependent autophagy in mouse neuronal cells by initiating the TSC1/mTOR pathway.
    Qi R; Zhang X; Xie Y; Jiang S; Liu Y; Liu X; Xie W; Jia X; Bade R; Shi R; Li S; Ren C; Gong K; Zhang C; Shao G
    Biomed Pharmacother; 2019 Oct; 118():109219. PubMed ID: 31325707
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Umbreen S; Banday MM; Jamroze A; Mansini AP; Ganaie AA; Ferrari MG; Maqbool R; Beigh FH; Murugan P; Morrissey C; Corey E; Konety BR; Saleem M
    Mol Cancer Ther; 2019 Nov; 18(11):2111-2123. PubMed ID: 31467179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Concurrent nuclear ERG and MYC protein overexpression defines a subset of locally advanced prostate cancer: Potential opportunities for synergistic targeted therapeutics.
    Udager AM; DeMarzo AM; Shi Y; Hicks JL; Cao X; Siddiqui J; Jiang H; Chinnaiyan AM; Mehra R
    Prostate; 2016 Jun; 76(9):845-53. PubMed ID: 27159573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GLIPR1 suppresses prostate cancer development through targeted oncoprotein destruction.
    Li L; Ren C; Yang G; Fattah EA; Goltsov AA; Kim SM; Lee JS; Park S; Demayo FJ; Ittmann MM; Troncoso P; Thompson TC
    Cancer Res; 2011 Dec; 71(24):7694-704. PubMed ID: 22025562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AKT3 promotes prostate cancer proliferation cells through regulation of Akt, B-Raf, and TSC1/TSC2.
    Lin HP; Lin CY; Huo C; Jan YJ; Tseng JC; Jiang SS; Kuo YY; Chen SC; Wang CT; Chan TM; Liou JY; Wang J; Chang WS; Chang CH; Kung HJ; Chuu CP
    Oncotarget; 2015 Sep; 6(29):27097-112. PubMed ID: 26318033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.