BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 30733194)

  • 21. Glutamine Transporters Are Targets of Multiple Oncogenic Signaling Pathways in Prostate Cancer.
    White MA; Lin C; Rajapakshe K; Dong J; Shi Y; Tsouko E; Mukhopadhyay R; Jasso D; Dawood W; Coarfa C; Frigo DE
    Mol Cancer Res; 2017 Aug; 15(8):1017-1028. PubMed ID: 28507054
    [TBL] [Abstract][Full Text] [Related]  

  • 22. FoxOs enforce a progression checkpoint to constrain mTORC1-activated renal tumorigenesis.
    Gan B; Lim C; Chu G; Hua S; Ding Z; Collins M; Hu J; Jiang S; Fletcher-Sananikone E; Zhuang L; Chang M; Zheng H; Wang YA; Kwiatkowski DJ; Kaelin WG; Signoretti S; DePinho RA
    Cancer Cell; 2010 Nov; 18(5):472-84. PubMed ID: 21075312
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Combined MYC Activation and Pten Loss Are Sufficient to Create Genomic Instability and Lethal Metastatic Prostate Cancer.
    Hubbard GK; Mutton LN; Khalili M; McMullin RP; Hicks JL; Bianchi-Frias D; Horn LA; Kulac I; Moubarek MS; Nelson PS; Yegnasubramanian S; De Marzo AM; Bieberich CJ
    Cancer Res; 2016 Jan; 76(2):283-92. PubMed ID: 26554830
    [TBL] [Abstract][Full Text] [Related]  

  • 24. SPOP regulates prostate epithelial cell proliferation and promotes ubiquitination and turnover of c-MYC oncoprotein.
    Geng C; Kaochar S; Li M; Rajapakshe K; Fiskus W; Dong J; Foley C; Dong B; Zhang L; Kwon OJ; Shah SS; Bolaki M; Xin L; Ittmann M; O'Malley BW; Coarfa C; Mitsiades N
    Oncogene; 2017 Aug; 36(33):4767-4777. PubMed ID: 28414305
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Dual Inhibition of RNA Pol I Transcription and PIM Kinase as a New Therapeutic Approach to Treat Advanced Prostate Cancer.
    Rebello RJ; Kusnadi E; Cameron DP; Pearson HB; Lesmana A; Devlin JR; Drygin D; Clark AK; Porter L; Pedersen J; Sandhu S; Risbridger GP; Pearson RB; Hannan RD; Furic L
    Clin Cancer Res; 2016 Nov; 22(22):5539-5552. PubMed ID: 27486174
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Kidney intercalated cells and the transcription factor FOXi1 drive cystogenesis in tuberous sclerosis complex.
    Barone S; Zahedi K; Brooks M; Henske EP; Yang Y; Zhang E; Bissler JJ; Yu JJ; Soleimani M
    Proc Natl Acad Sci U S A; 2021 Feb; 118(6):. PubMed ID: 33536341
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Obesogenic High-Fat Diet and MYC Cooperate to Promote Lactate Accumulation and Tumor Microenvironment Remodeling in Prostate Cancer.
    Boufaied N; Chetta P; Hallal T; Cacciatore S; Lalli D; Luthold C; Homsy K; Imada EL; Syamala S; Photopoulos C; Di Matteo A; de Polo A; Storaci AM; Huang Y; Giunchi F; Sheridan PA; Michelotti G; Nguyen QD; Zhao X; Liu Y; Davicioni E; Spratt DE; Sabbioneda S; Maga G; Mucci LA; Ghigna C; Marchionni L; Butler LM; Ellis L; Bordeleau F; Loda M; Vaira V; Labbé DP; Zadra G
    Cancer Res; 2024 Jun; 84(11):1834-1855. PubMed ID: 38831751
    [TBL] [Abstract][Full Text] [Related]  

  • 28. TSC1/mTOR-controlled metabolic-epigenetic cross talk underpins DC control of CD8+ T-cell homeostasis.
    Shi L; Chen X; Zang A; Li T; Hu Y; Ma S; Lü M; Yin H; Wang H; Zhang X; Zhang B; Leng Q; Yang J; Xiao H
    PLoS Biol; 2019 Aug; 17(8):e3000420. PubMed ID: 31433805
    [TBL] [Abstract][Full Text] [Related]  

  • 29. MicroRNA-27a-5p regulation by promoter methylation and MYC signaling in prostate carcinogenesis.
    Barros-Silva D; Costa-Pinheiro P; Duarte H; Sousa EJ; Evangelista AF; Graça I; Carneiro I; Martins AT; Oliveira J; Carvalho AL; Marques MM; Henrique R; Jerónimo C
    Cell Death Dis; 2018 Feb; 9(2):167. PubMed ID: 29415999
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Plk1-Mediated Phosphorylation of TSC1 Enhances the Efficacy of Rapamycin.
    Li Z; Kong Y; Song L; Luo Q; Liu J; Shao C; Hou X; Liu X
    Cancer Res; 2018 Jun; 78(11):2864-2875. PubMed ID: 29559472
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Disruption of TSC1/2 signaling complex reveals a checkpoint governing thymic CD4+ CD25+ Foxp3+ regulatory T-cell development in mice.
    Chen H; Zhang L; Zhang H; Xiao Y; Shao L; Li H; Yin H; Wang R; Liu G; Corley D; Yang Z; Zhao Y
    FASEB J; 2013 Oct; 27(10):3979-90. PubMed ID: 23882125
    [TBL] [Abstract][Full Text] [Related]  

  • 32. O-GlcNAc transferase integrates metabolic pathways to regulate the stability of c-MYC in human prostate cancer cells.
    Itkonen HM; Minner S; Guldvik IJ; Sandmann MJ; Tsourlakis MC; Berge V; Svindland A; Schlomm T; Mills IG
    Cancer Res; 2013 Aug; 73(16):5277-87. PubMed ID: 23720054
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Constant Degradation of the Androgen Receptor by MDM2 Conserves Prostate Cancer Stem Cell Integrity.
    Vummidi Giridhar P; Williams K; VonHandorf AP; Deford PL; Kasper S
    Cancer Res; 2019 Mar; 79(6):1124-1137. PubMed ID: 30626627
    [TBL] [Abstract][Full Text] [Related]  

  • 34. mTOR/MYC Axis Regulates O-GlcNAc Transferase Expression and O-GlcNAcylation in Breast Cancer.
    Sodi VL; Khaku S; Krutilina R; Schwab LP; Vocadlo DJ; Seagroves TN; Reginato MJ
    Mol Cancer Res; 2015 May; 13(5):923-33. PubMed ID: 25636967
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Increased Akt signaling resulting from the loss of androgen responsiveness in prostate cancer.
    Dulinska-Litewka J; McCubrey JA; Laidler P
    Curr Med Chem; 2013; 20(1):144-57. PubMed ID: 23033951
    [TBL] [Abstract][Full Text] [Related]  

  • 36. B-Raf activation cooperates with PTEN loss to drive c-Myc expression in advanced prostate cancer.
    Wang J; Kobayashi T; Floc'h N; Kinkade CW; Aytes A; Dankort D; Lefebvre C; Mitrofanova A; Cardiff RD; McMahon M; Califano A; Shen MM; Abate-Shen C
    Cancer Res; 2012 Sep; 72(18):4765-76. PubMed ID: 22836754
    [TBL] [Abstract][Full Text] [Related]  

  • 37. PDK1 signaling toward PLK1-MYC activation confers oncogenic transformation, tumor-initiating cell activation, and resistance to mTOR-targeted therapy.
    Tan J; Li Z; Lee PL; Guan P; Aau MY; Lee ST; Feng M; Lim CZ; Lee EY; Wee ZN; Lim YC; Karuturi RK; Yu Q
    Cancer Discov; 2013 Oct; 3(10):1156-71. PubMed ID: 23887393
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transcription factor FoxM1 is the downstream target of c-Myc and contributes to the development of prostate cancer.
    Pan H; Zhu Y; Wei W; Shao S; Rui X
    World J Surg Oncol; 2018 Mar; 16(1):59. PubMed ID: 29554906
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Androgens induce prostate cancer cell proliferation through mammalian target of rapamycin activation and post-transcriptional increases in cyclin D proteins.
    Xu Y; Chen SY; Ross KN; Balk SP
    Cancer Res; 2006 Aug; 66(15):7783-92. PubMed ID: 16885382
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pathway-based expression profiling of benign prostatic hyperplasia and prostate cancer delineates an immunophilin molecule associated with cancer progression.
    Bhowal A; Majumder S; Ghosh S; Basu S; Sen D; Roychowdhury S; Sengupta S; Chatterji U
    Sci Rep; 2017 Aug; 7(1):9763. PubMed ID: 28852180
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.