BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 30733290)

  • 41. Optimized Synthesis of ZSM-11 Catalysts using 1,8-Diaminooctane as a Structure-Directing Agent.
    Shen Y; Le TT; Li R; Rimer JD
    Chemphyschem; 2018 Feb; 19(4):529-537. PubMed ID: 29057593
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Neural-Network-Biased Genetic Algorithms for Materials Design: Evolutionary Algorithms That Learn.
    Patra TK; Meenakshisundaram V; Hung JH; Simmons DS
    ACS Comb Sci; 2017 Feb; 19(2):96-107. PubMed ID: 27997791
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Variation of the Orientations of Organic Structure-Directing Agents inside the Channels of SCM-14 and SCM-15 Germanosilicates Obtained by Ab Initio Molecular Dynamic Simulations.
    Gramatikov SP; Petkov PS; Wang Z; Yang W; Vayssilov GN
    Nanomaterials (Basel); 2024 Jan; 14(2):. PubMed ID: 38251123
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Synthesis and Structure Determination of SCM-15: A 3D Large Pore Zeolite with Interconnected Straight 12×12×10-Ring Channels.
    Luo Y; Smeets S; Wang Z; Sun J; Yang W
    Chemistry; 2019 Feb; 25(9):2184-2188. PubMed ID: 30521132
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Seed-assisted, one-pot synthesis of hollow zeolite beta without using organic structure-directing agents.
    Iyoki K; Itabashi K; Okubo T
    Chem Asian J; 2013 Jul; 8(7):1419-27. PubMed ID: 23670843
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Facile Synthesis, Characterization, and Catalytic Behavior of a Large-Pore Zeolite with the IWV Framework.
    Schmidt JE; Chen CY; Brand SK; Zones SI; Davis ME
    Chemistry; 2016 Mar; 22(12):4022-9. PubMed ID: 26833857
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Designing SAPO-18 with energetically favorable tetrahedral Si ions for an MTO reaction.
    Wen M; Ren L; Zhang J; Jiang J; Xu H; Guan Y; Wu P
    Chem Commun (Camb); 2021 Jun; 57(46):5682-5685. PubMed ID: 33977951
    [TBL] [Abstract][Full Text] [Related]  

  • 48. CIT-9: A Fault-Free Gmelinite Zeolite.
    Dusselier M; Kang JH; Xie D; Davis ME
    Angew Chem Int Ed Engl; 2017 Oct; 56(43):13475-13478. PubMed ID: 28857426
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Synthesis and Structure Determination of Large-Pore Zeolite SCM-14.
    Luo Y; Smeets S; Peng F; Etman AS; Wang Z; Sun J; Yang W
    Chemistry; 2017 Nov; 23(66):16829-16834. PubMed ID: 28967679
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Local Distortions in a Prototypical Zeolite Framework Containing Double Four-Ring Cages: The Role of Framework Composition and Organic Guests*.
    Fischer M; Freymann L
    Chemphyschem; 2021 Jan; 22(1):40-54. PubMed ID: 33185963
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Synthesis design and structure of a multipore zeolite with interconnected 12- and 10-MR channels.
    Moliner M; Willhammar T; Wan W; González J; Rey F; Jorda JL; Zou X; Corma A
    J Am Chem Soc; 2012 Apr; 134(14):6473-8. PubMed ID: 22440136
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Framework stabilization of Ge-rich zeolites via postsynthesis alumination.
    Gao F; Jaber M; Bozhilov K; Vicente A; Fernandez C; Valtchev V
    J Am Chem Soc; 2009 Nov; 131(45):16580-6. PubMed ID: 19848393
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Thermodynamic rules for zeolite formation from machine learning based global optimization.
    Ma S; Shang C; Wang CM; Liu ZP
    Chem Sci; 2020 Sep; 11(37):10113-10118. PubMed ID: 34094273
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Conceptual similarities between zeolites and artificial enzymes.
    Gallego EM; Paris C; Cantín Á; Moliner M; Corma A
    Chem Sci; 2019 Sep; 10(34):8009-8015. PubMed ID: 31853356
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Machine Learning-Based Prediction of Activation Energies for Chemical Reactions on Metal Surfaces.
    Hutton DJ; Cordes KE; Michel C; Göltl F
    J Chem Inf Model; 2023 Oct; 63(19):6006-6013. PubMed ID: 37722106
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Organic-Free, ZnO-Assisted Synthesis of Zeolite FAU with Tunable SiO
    Guo Y; Sun T; Gu Y; Liu X; Ke Q; Wang S
    Chem Asian J; 2018 May; 13(9):1114-1118. PubMed ID: 29543406
    [TBL] [Abstract][Full Text] [Related]  

  • 57. One-pot synthesis of MWW zeolite nanosheets using a rationally designed organic structure-directing agent.
    Luo HY; Michaelis VK; Hodges S; Griffin RG; Román-Leshkov Y
    Chem Sci; 2015 Nov; 6(11):6320-6324. PubMed ID: 26478803
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Design of organic structure directing agents to control the synthesis of zeolites for carbon capture and storage.
    Daeyaert F; Deem MW
    RSC Adv; 2019 Dec; 9(71):41934-41942. PubMed ID: 35541618
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nanocrystalline SSZ-39 zeolite as an efficient catalyst for the methanol-to-olefin (MTO) process.
    Martín N; Li Z; Martínez-Triguero J; Yu J; Moliner M; Corma A
    Chem Commun (Camb); 2016 Apr; 52(36):6072-5. PubMed ID: 26947336
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A reactive, scalable, and transferable model for molecular energies from a neural network approach based on local information.
    Unke OT; Meuwly M
    J Chem Phys; 2018 Jun; 148(24):241708. PubMed ID: 29960298
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.