These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
26. A Solid-State Source of Single and Entangled Photons at Diamond SiV-Center Transitions Operating at 80K. Cao X; Yang J; Fandrich T; Zhang Y; Rugeramigabo EP; Brechtken B; Haug RJ; Zopf M; Ding F Nano Lett; 2023 Jul; 23(13):6109-6115. PubMed ID: 37378494 [TBL] [Abstract][Full Text] [Related]
27. Electric field induced removal of the biexciton binding energy in a single quantum dot. Reimer ME; van Kouwen MP; Hidma AW; van Weert MH; Bakkers EP; Kouwenhoven LP; Zwiller V Nano Lett; 2011 Feb; 11(2):645-50. PubMed ID: 21226507 [TBL] [Abstract][Full Text] [Related]
28. Valence band offset, strain and shape effects on confined states in self-assembled InAs/InP and InAs/GaAs quantum dots. Zieliński M J Phys Condens Matter; 2013 Nov; 25(46):465301. PubMed ID: 24129261 [TBL] [Abstract][Full Text] [Related]
29. Droplet etching of deep nanoholes for filling with self-aligned complex quantum structures. Küster A; Heyn C; Ungeheuer A; Juska G; Tommaso Moroni S; Pelucchi E; Hansen W Nanoscale Res Lett; 2016 Dec; 11(1):282. PubMed ID: 27255902 [TBL] [Abstract][Full Text] [Related]
30. Coherence of an entangled exciton-photon state. Hudson AJ; Stevenson RM; Bennett AJ; Young RJ; Nicoll CA; Atkinson P; Cooper K; Ritchie DA; Shields AJ Phys Rev Lett; 2007 Dec; 99(26):266802. PubMed ID: 18233599 [TBL] [Abstract][Full Text] [Related]
31. Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots. Huber D; Reindl M; Huo Y; Huang H; Wildmann JS; Schmidt OG; Rastelli A; Trotta R Nat Commun; 2017 May; 8():15506. PubMed ID: 28548081 [TBL] [Abstract][Full Text] [Related]
32. Solid-state ensemble of highly entangled photon sources at rubidium atomic transitions. Keil R; Zopf M; Chen Y; Höfer B; Zhang J; Ding F; Schmidt OG Nat Commun; 2017 May; 8():15501. PubMed ID: 28548092 [TBL] [Abstract][Full Text] [Related]
34. Exciton Dynamics in Droplet Epitaxial Quantum Dots Grown on (311)A-Oriented Substrates. Abbarchi M; Mano T; Kuroda T; Sakoda K Nanomaterials (Basel); 2020 Sep; 10(9):. PubMed ID: 32937876 [TBL] [Abstract][Full Text] [Related]
35. Generation of Polarization-Entangled Photons from Self-Assembled Quantum Dots in a Hybrid Quantum Photonic Chip. Jin T; Li X; Liu R; Ou W; Zhu Y; Wang X; Liu J; Huo Y; Ou X; Zhang J Nano Lett; 2022 Jan; 22(2):586-593. PubMed ID: 35025517 [TBL] [Abstract][Full Text] [Related]
36. GaAs Cone-Shell Quantum Dots in a Lateral Electric Field: Exciton Stark-Shift, Lifetime, and Fine-Structure Splitting. Alshaikh A; Blick RH; Heyn C Nanomaterials (Basel); 2024 Jul; 14(14):. PubMed ID: 39057850 [TBL] [Abstract][Full Text] [Related]
37. Electric-Field-Induced Energy Tuning of On-Demand Entangled-Photon Emission from Self-Assembled Quantum Dots. Zhang J; Zallo E; Höfer B; Chen Y; Keil R; Zopf M; Böttner S; Ding F; Schmidt OG Nano Lett; 2017 Jan; 17(1):501-507. PubMed ID: 27995799 [TBL] [Abstract][Full Text] [Related]
38. Advanced technologies for quantum photonic devices based on epitaxial quantum dots. Zhao TM; Chen Y; Yu Y; Li Q; Davanco M; Liu J Adv Quantum Technol; 2020 Feb; 3(2):. PubMed ID: 36452403 [TBL] [Abstract][Full Text] [Related]
39. Phonon-Assisted Two-Photon Interference from Remote Quantum Emitters. Reindl M; Jöns KD; Huber D; Schimpf C; Huo Y; Zwiller V; Rastelli A; Trotta R Nano Lett; 2017 Jul; 17(7):4090-4095. PubMed ID: 28557459 [TBL] [Abstract][Full Text] [Related]
40. A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability. Liu J; Su R; Wei Y; Yao B; Silva SFCD; Yu Y; Iles-Smith J; Srinivasan K; Rastelli A; Li J; Wang X Nat Nanotechnol; 2019 Jun; 14(6):586-593. PubMed ID: 31011221 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]