These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 30733530)

  • 1. Tailoring the robust superhydrophobic silicon textures with stable photodetection properties.
    Hsiao M; Chen KY; Chen CY
    Sci Rep; 2019 Feb; 9(1):1579. PubMed ID: 30733530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robust superhydrophobic silicon without a low surface-energy hydrophobic coating.
    Hoshian S; Jokinen V; Somerkivi V; Lokanathan AR; Franssila S
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):941-9. PubMed ID: 25522296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superhydrophobic micro/nano dual-scale structures.
    Zhang X; Di Q; Zhu F; Sun G; Zhang H
    J Nanosci Nanotechnol; 2013 Feb; 13(2):1539-42. PubMed ID: 23646678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superhydrophobicity on two-tier rough surfaces fabricated by controlled growth of aligned carbon nanotube arrays coated with fluorocarbon.
    Zhu L; Xiu Y; Xu J; Tamirisa PA; Hess DW; Wong CP
    Langmuir; 2005 Nov; 21(24):11208-12. PubMed ID: 16285792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly efficient and large-scale fabrication of superhydrophobic alumina surface with strong stability based on self-congregated alumina nanowires.
    Peng S; Tian D; Yang X; Deng W
    ACS Appl Mater Interfaces; 2014 Apr; 6(7):4831-41. PubMed ID: 24593862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrafast Laser Enabling Hierarchical Structures for Versatile Superhydrophobicity with Enhanced Cassie-Baxter Stability and Durability.
    Fan P; Pan R; Zhong M
    Langmuir; 2019 Dec; 35(51):16693-16711. PubMed ID: 31782653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construct hierarchical superhydrophobic silicon surfaces by chemical etching.
    Zhou Y; He B; Yang Y; Wang F; Liu W; Wang P; Zhang W; Bello I; Lee ST
    J Nanosci Nanotechnol; 2011 Mar; 11(3):2292-7. PubMed ID: 21449383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The preparation of superhydrophobic surfaces of hierarchical silicon nanowire structures.
    Kuan WF; Chen LJ
    Nanotechnology; 2009 Jan; 20(3):035605. PubMed ID: 19417300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superhydrophobic silicon surfaces with micro-nano hierarchical structures via deep reactive ion etching and galvanic etching.
    He Y; Jiang C; Yin H; Chen J; Yuan W
    J Colloid Interface Sci; 2011 Dec; 364(1):219-29. PubMed ID: 21889158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly Stretchable Superhydrophobic Composite Coating Based on Self-Adaptive Deformation of Hierarchical Structures.
    Hu X; Tang C; He Z; Shao H; Xu K; Mei J; Lau WM
    Small; 2017 May; 13(19):. PubMed ID: 28306203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mimicking both petal and lotus effects on a single silicon substrate by tuning the wettability of nanostructured surfaces.
    Dawood MK; Zheng H; Liew TH; Leong KC; Foo YL; Rajagopalan R; Khan SA; Choi WK
    Langmuir; 2011 Apr; 27(7):4126-33. PubMed ID: 21355585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of superhydrophilicity/superhydrophobicity using silicon nanowires via electroless etching method and fluorine carbon coatings.
    Kim BS; Shin S; Shin SJ; Kim KM; Cho HH
    Langmuir; 2011 Aug; 27(16):10148-56. PubMed ID: 21728376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical stability, corrosion resistance of superhydrophobic steel and repairable durability of its slippery surface.
    Gao X; Guo Z
    J Colloid Interface Sci; 2018 Feb; 512():239-248. PubMed ID: 29073465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanostructures in superhydrophobic Ti6Al4V hierarchical surfaces control wetting state transitions.
    Shen Y; Tao J; Tao H; Chen S; Pan L; Wang T
    Soft Matter; 2015 May; 11(19):3806-11. PubMed ID: 25855128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid reversible superhydrophobicity-to-superhydrophilicity transition on alternating current etched brass.
    Wang Z; Zhu L; Li W; Liu H
    ACS Appl Mater Interfaces; 2013 Jun; 5(11):4808-14. PubMed ID: 23627251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of Low-Cost Flexible Superhydrophobic Antibacterial Surface with Dual-Scale Roughness.
    Tripathy A; Kumar A; Sreedharan S; Muralidharan G; Pramanik A; Nandi D; Sen P
    ACS Biomater Sci Eng; 2018 Jun; 4(6):2213-2223. PubMed ID: 33435043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simple and cost-effective fabrication of highly flexible, transparent superhydrophobic films with hierarchical surface design.
    Kim TH; Ha SH; Jang NS; Kim J; Kim JH; Park JK; Lee DW; Lee J; Kim SH; Kim JM
    ACS Appl Mater Interfaces; 2015 Mar; 7(9):5289-95. PubMed ID: 25688451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A combined etching process toward robust superhydrophobic SiC surfaces.
    Liu Y; Lin W; Lin Z; Xiu Y; Wong CP
    Nanotechnology; 2012 Jun; 23(25):255703. PubMed ID: 22652604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wrinkled, dual-scale structures of diamond-like carbon (DLC) for superhydrophobicity.
    Rahmawan Y; Moon MW; Kim KS; Lee KR; Suh KY
    Langmuir; 2010 Jan; 26(1):484-91. PubMed ID: 19810723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship between Wetting Hysteresis and Contact Time of a Bouncing Droplet on Hydrophobic Surfaces.
    Shen Y; Tao J; Tao H; Chen S; Pan L; Wang T
    ACS Appl Mater Interfaces; 2015 Sep; 7(37):20972-8. PubMed ID: 26331793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.