These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 30733567)
1. Simultaneous targeting of linked loci in mouse embryos using base editing. Lee HK; Willi M; Smith HE; Miller SM; Liu DR; Liu C; Hennighausen L Sci Rep; 2019 Feb; 9(1):1662. PubMed ID: 30733567 [TBL] [Abstract][Full Text] [Related]
2. Introduction of pathogenic mutations into the mouse Psen1 gene by Base Editor and Target-AID. Sasaguri H; Nagata K; Sekiguchi M; Fujioka R; Matsuba Y; Hashimoto S; Sato K; Kurup D; Yokota T; Saido TC Nat Commun; 2018 Jul; 9(1):2892. PubMed ID: 30042426 [TBL] [Abstract][Full Text] [Related]
3. Effective gene editing by high-fidelity base editor 2 in mouse zygotes. Liang P; Sun H; Sun Y; Zhang X; Xie X; Zhang J; Zhang Z; Chen Y; Ding C; Xiong Y; Ma W; Liu D; Huang J; Songyang Z Protein Cell; 2017 Aug; 8(8):601-611. PubMed ID: 28585179 [TBL] [Abstract][Full Text] [Related]
4. Frequency of off-targeting in genome edited pigs produced via direct injection of the CRISPR/Cas9 system into developing embryos. Carey K; Ryu J; Uh K; Lengi AJ; Clark-Deener S; Corl BA; Lee K BMC Biotechnol; 2019 May; 19(1):25. PubMed ID: 31060546 [TBL] [Abstract][Full Text] [Related]
5. Discovery and characterization of sgRNA-sequence-independent DNA cleavage from CRISPR/Cas9 in mouse embryos. Yang L; Chen L; Zheng Y; Deng L; Bai R; Zhang T; Wang Z; Li S Genomics; 2024 May; 116(3):110836. PubMed ID: 38537809 [TBL] [Abstract][Full Text] [Related]
6. CRISPR base editors: genome editing without double-stranded breaks. Eid A; Alshareef S; Mahfouz MM Biochem J; 2018 Jun; 475(11):1955-1964. PubMed ID: 29891532 [TBL] [Abstract][Full Text] [Related]
7. Targeting fidelity of adenine and cytosine base editors in mouse embryos. Lee HK; Willi M; Miller SM; Kim S; Liu C; Liu DR; Hennighausen L Nat Commun; 2018 Nov; 9(1):4804. PubMed ID: 30442934 [TBL] [Abstract][Full Text] [Related]
8. Large genomic fragment deletion and functional gene cassette knock-in via Cas9 protein mediated genome editing in one-cell rodent embryos. Wang L; Shao Y; Guan Y; Li L; Wu L; Chen F; Liu M; Chen H; Ma Y; Ma X; Liu M; Li D Sci Rep; 2015 Dec; 5():17517. PubMed ID: 26620761 [TBL] [Abstract][Full Text] [Related]
9. Multiplex Gene Disruption by Targeted Base Editing of Yarrowia lipolytica Genome Using Cytidine Deaminase Combined with the CRISPR/Cas9 System. Bae SJ; Park BG; Kim BG; Hahn JS Biotechnol J; 2020 Jan; 15(1):e1900238. PubMed ID: 31657874 [TBL] [Abstract][Full Text] [Related]
10. Targeting specificity of APOBEC-based cytosine base editor in human iPSCs determined by whole genome sequencing. McGrath E; Shin H; Zhang L; Phue JN; Wu WW; Shen RF; Jang YY; Revollo J; Ye Z Nat Commun; 2019 Nov; 10(1):5353. PubMed ID: 31767844 [TBL] [Abstract][Full Text] [Related]
11. Developmental competence of porcine genome-edited zygotes. Gil MA; Martinez CA; Nohalez A; Parrilla I; Roca J; Wu J; Ross PJ; Cuello C; Izpisua JC; Martinez EA Mol Reprod Dev; 2017 Sep; 84(9):814-821. PubMed ID: 28471514 [TBL] [Abstract][Full Text] [Related]
12. Simplified pipelines for genetic engineering of mammalian embryos by CRISPR-Cas9 electroporation†. Miao D; Giassetti MI; Ciccarelli M; Lopez-Biladeau B; Oatley JM Biol Reprod; 2019 Jul; 101(1):177-187. PubMed ID: 31095680 [TBL] [Abstract][Full Text] [Related]
13. Increasing the efficiency and targeting range of cytidine base editors through fusion of a single-stranded DNA-binding protein domain. Zhang X; Chen L; Zhu B; Wang L; Chen C; Hong M; Huang Y; Li H; Han H; Cai B; Yu W; Yin S; Yang L; Yang Z; Liu M; Zhang Y; Mao Z; Wu Y; Liu M; Li D Nat Cell Biol; 2020 Jun; 22(6):740-750. PubMed ID: 32393889 [TBL] [Abstract][Full Text] [Related]
14. Delivery of CRISPR-Cas9 into Mouse Zygotes by Electroporation. Qin W; Wang H Methods Mol Biol; 2019; 1874():179-190. PubMed ID: 30353514 [TBL] [Abstract][Full Text] [Related]
16. Progress in the application of CRISPR: From gene to base editing. Wu W; Yang Y; Lei H Med Res Rev; 2019 Mar; 39(2):665-683. PubMed ID: 30171624 [TBL] [Abstract][Full Text] [Related]
17. Simultaneous zygotic inactivation of multiple genes in mouse through CRISPR/Cas9-mediated base editing. Zhang H; Pan H; Zhou C; Wei Y; Ying W; Li S; Wang G; Li C; Ren Y; Li G; Ding X; Sun Y; Li GL; Song L; Li Y; Yang H; Liu Z Development; 2018 Oct; 145(20):. PubMed ID: 30275281 [No Abstract] [Full Text] [Related]
18. Highly efficient single base editing in Aspergillus niger with CRISPR/Cas9 cytidine deaminase fusion. Huang L; Dong H; Zheng J; Wang B; Pan L Microbiol Res; 2019; 223-225():44-50. PubMed ID: 31178050 [TBL] [Abstract][Full Text] [Related]
19. Highly efficient base editing with expanded targeting scope using SpCas9-NG in rabbits. Liu Z; Shan H; Chen S; Chen M; Song Y; Lai L; Li Z FASEB J; 2020 Jan; 34(1):588-596. PubMed ID: 31914687 [TBL] [Abstract][Full Text] [Related]
20. Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Zuo E; Sun Y; Wei W; Yuan T; Ying W; Sun H; Yuan L; Steinmetz LM; Li Y; Yang H Science; 2019 Apr; 364(6437):289-292. PubMed ID: 30819928 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]