These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
251 related articles for article (PubMed ID: 30733780)
1. Screening of plant growth promoting traits in heavy metals resistant bacteria: Prospects in phytoremediation. Tirry N; Tahri Joutey N; Sayel H; Kouchou A; Bahafid W; Asri M; El Ghachtouli N J Genet Eng Biotechnol; 2018 Dec; 16(2):613-619. PubMed ID: 30733780 [TBL] [Abstract][Full Text] [Related]
2. Influence of metal resistant-plant growth-promoting bacteria on the growth of Ricinus communis in soil contaminated with heavy metals. Rajkumar M; Freitas H Chemosphere; 2008 Mar; 71(5):834-42. PubMed ID: 18164365 [TBL] [Abstract][Full Text] [Related]
3. The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil. Ma Y; Oliveira RS; Nai F; Rajkumar M; Luo Y; Rocha I; Freitas H J Environ Manage; 2015 Jun; 156():62-9. PubMed ID: 25796039 [TBL] [Abstract][Full Text] [Related]
4. Improved chromium tolerance of Medicago sativa by plant growth-promoting rhizobacteria (PGPR). Tirry N; Kouchou A; El Omari B; Ferioun M; El Ghachtouli N J Genet Eng Biotechnol; 2021 Oct; 19(1):149. PubMed ID: 34613510 [TBL] [Abstract][Full Text] [Related]
5. Isolation, characterization and the effect of indigenous heavy metal-resistant plant growth-promoting bacteria on sorghum grown in acid mine drainage polluted soils. Wu Z; Kong Z; Lu S; Huang C; Huang S; He Y; Wu L J Gen Appl Microbiol; 2019 Dec; 65(5):254-264. PubMed ID: 31243191 [TBL] [Abstract][Full Text] [Related]
6. Enhancing the Phytoremediation of Heavy Metals by Combining Hyperaccumulator and Heavy Metal-Resistant Plant Growth-Promoting Bacteria. Zhang Y; Zhao S; Liu S; Peng J; Zhang H; Zhao Q; Zheng L; Chen Y; Shen Z; Xu X; Chen C Front Plant Sci; 2022; 13():912350. PubMed ID: 35720534 [TBL] [Abstract][Full Text] [Related]
7. Isolation and Characterization of Pb-Solubilizing Bacteria and Their Effects on Pb Uptake by Yahaghi Z; Shirvani M; Nourbakhsh F; de la Peña TC; Pueyo JJ; Talebi M J Microbiol Biotechnol; 2018 Jul; 28(7):1156-1167. PubMed ID: 29975995 [TBL] [Abstract][Full Text] [Related]
8. Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation. Agnello AC; Bagard M; van Hullebusch ED; Esposito G; Huguenot D Sci Total Environ; 2016 Sep; 563-564():693-703. PubMed ID: 26524994 [TBL] [Abstract][Full Text] [Related]
9. Exopolysaccharides and indole-3-acetic acid producing Bacillus safensis strain FN13 potential candidate for phytostabilization of heavy metals. Nazli F; Jamil M; Hussain A; Hussain T Environ Monit Assess; 2020 Oct; 192(11):738. PubMed ID: 33128189 [TBL] [Abstract][Full Text] [Related]
10. Amelioration of chromium and heat stresses in Sorghum bicolor by Cr Bruno LB; Karthik C; Ma Y; Kadirvelu K; Freitas H; Rajkumar M Chemosphere; 2020 Apr; 244():125521. PubMed ID: 31812764 [TBL] [Abstract][Full Text] [Related]
11. Screening of heavy metal-resistant rhizobial and non-rhizobial microflora isolated from Trifolium sp. growing in mining areas. Rahal S; Menaa B; Chekireb D Environ Monit Assess; 2024 Feb; 196(3):283. PubMed ID: 38372826 [TBL] [Abstract][Full Text] [Related]
12. Isolation, characterization, and selection of heavy metal-resistant and plant growth-promoting endophytic bacteria from root nodules of Robinia pseudoacacia in a Pb/Zn mining area. Fan M; Liu Z; Nan L; Wang E; Chen W; Lin Y; Wei G Microbiol Res; 2018 Dec; 217():51-59. PubMed ID: 30384908 [TBL] [Abstract][Full Text] [Related]
13. Assessment of plant growth promoting bacterial populations in the rhizosphere of metallophytes from the Kettara mine, Marrakech. Benidire L; Pereira SI; Castro PM; Boularbah A Environ Sci Pollut Res Int; 2016 Nov; 23(21):21751-21765. PubMed ID: 27522210 [TBL] [Abstract][Full Text] [Related]
14. Heavy metal accumulation in Lathyrus sativus growing in contaminated soils and identification of symbiotic resistant bacteria. Abdelkrim S; Jebara SH; Saadani O; Chiboub M; Abid G; Mannai K; Jebara M Arch Microbiol; 2019 Jan; 201(1):107-121. PubMed ID: 30276423 [TBL] [Abstract][Full Text] [Related]
15. Phylogenetic Illustration of Eisenia fetida Associated Vermi-bacteria Involved in Heavy Metals Remediation and Retaining Plant Growth Promoting Traits. Naseer A; Andleeb S; Basit A; Abbasi WA; Ejaz S; Ali S; Ali NM J Oleo Sci; 2022 Aug; 71(8):1241-1252. PubMed ID: 35793970 [TBL] [Abstract][Full Text] [Related]
16. Screening and Evaluation of the Bioremediation Potential of Cu/Zn-Resistant, Autochthonous Fang Q; Fan Z; Xie Y; Wang X; Li K; Liu Y Front Plant Sci; 2016; 7():1487. PubMed ID: 27746807 [TBL] [Abstract][Full Text] [Related]
17. Improvement of rice plant productivity by native Cr(VI) reducing and plant growth promoting soil bacteria Enterobacter cloacae. Pattnaik S; Dash D; Mohapatra S; Pattnaik M; Marandi AK; Das S; Samantaray DP Chemosphere; 2020 Feb; 240():124895. PubMed ID: 31550588 [TBL] [Abstract][Full Text] [Related]
18. Serpentine endophytic bacterium Pseudomonas azotoformans ASS1 accelerates phytoremediation of soil metals under drought stress. Ma Y; Rajkumar M; Moreno A; Zhang C; Freitas H Chemosphere; 2017 Oct; 185():75-85. PubMed ID: 28686889 [TBL] [Abstract][Full Text] [Related]
19. Enhancement of heavy metal phytoremediation by Alnus firma with endophytic Bacillus thuringiensis GDB-1. Babu AG; Kim JD; Oh BT J Hazard Mater; 2013 Apr; 250-251():477-83. PubMed ID: 23500429 [TBL] [Abstract][Full Text] [Related]
20. Alleviation of heavy metal toxicity and phytostimulation of Brassica campestris L. by endophytic Mucor sp. MHR-7. Zahoor M; Irshad M; Rahman H; Qasim M; Afridi SG; Qadir M; Hussain A Ecotoxicol Environ Saf; 2017 Aug; 142():139-149. PubMed ID: 28407499 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]