These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 30734442)

  • 61. Efficient self-assembly in water of long noncovalent polymers by nucleobase analogues.
    Cafferty BJ; Gállego I; Chen MC; Farley KI; Eritja R; Hud NV
    J Am Chem Soc; 2013 Feb; 135(7):2447-50. PubMed ID: 23394182
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Amphiphilic and Hydrophilic Block Copolymers from Aliphatic N-Substituted 8-Membered Cyclic Carbonates: A Versatile Macromolecular Platform for Biomedical Applications.
    Venkataraman S; Tan JP; Ng VW; Tan EW; Hedrick JL; Yang YY
    Biomacromolecules; 2017 Jan; 18(1):178-188. PubMed ID: 28064501
    [TBL] [Abstract][Full Text] [Related]  

  • 63. New building blocks for the assembly of sequence selective molecular zippers.
    Hunter CA; Jones PS; Tiger PM; Tomas S
    Chem Commun (Camb); 2003 Jul; (14):1642-3. PubMed ID: 12877481
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Coordination-Driven Syntheses of Compact Supramolecular Metallacycles toward Extended Metallo-organic Stacked Supramolecular Assemblies.
    Lescop C
    Acc Chem Res; 2017 Apr; 50(4):885-894. PubMed ID: 28263559
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Cooperative macromolecular self-assembly toward polymeric assemblies with multiple and bioactive functions.
    Zhang Z; Ma R; Shi L
    Acc Chem Res; 2014 Apr; 47(4):1426-37. PubMed ID: 24694280
    [TBL] [Abstract][Full Text] [Related]  

  • 66. High-throughput development of amphiphile self-assembly materials: fast-tracking synthesis, characterization, formulation, application, and understanding.
    Mulet X; Conn CE; Fong C; Kennedy DF; Moghaddam MJ; Drummond CJ
    Acc Chem Res; 2013 Jul; 46(7):1497-505. PubMed ID: 23427836
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Rational Design of Supramolecular Dynamic Protein Assemblies by Using a Micelle-Assisted Activity-Based Protein-Labeling Technology.
    Sandanaraj BS; Reddy MM; Bhandari PJ; Kumar S; Aswal VK
    Chemistry; 2018 Oct; 24(60):16085-16096. PubMed ID: 30101461
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Protein-based supramolecular polymers: progress and prospect.
    Luo Q; Dong Z; Hou C; Liu J
    Chem Commun (Camb); 2014 Sep; 50(70):9997-10007. PubMed ID: 25005829
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Self-assembly of aromatic amino acids: a molecular dynamics study.
    Uyaver S; Hernandez HW; Habiboglu MG
    Phys Chem Chem Phys; 2018 Dec; 20(48):30525-30536. PubMed ID: 30512023
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Programmed hyperhelical supramolecular assembly of nickel phthalocyanine bearing enantiopure 1-(p-tolyl)ethylaminocarbonyl groups.
    Rai R; Saxena A; Ohira A; Fujiki M
    Langmuir; 2005 Apr; 21(9):3957-62. PubMed ID: 15835961
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Building Up Functional Bionanocomposites from the Assembly of Clays and Biopolymers.
    Alcântara ACS; Darder M
    Chem Rec; 2018 Jul; 18(7-8):696-712. PubMed ID: 29314621
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Supramolecular polymeric materials via cyclodextrin-guest interactions.
    Harada A; Takashima Y; Nakahata M
    Acc Chem Res; 2014 Jul; 47(7):2128-40. PubMed ID: 24911321
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Tunable Orthogonal Reversible Covalent (TORC) Bonds: Dynamic Chemical Control over Molecular Assembly.
    Reuther JF; Dahlhauser SD; Anslyn EV
    Angew Chem Int Ed Engl; 2019 Jan; 58(1):74-85. PubMed ID: 30098086
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Xyloglucan-Functional Latex Particles via RAFT-Mediated Emulsion Polymerization for the Biomimetic Modification of Cellulose.
    Hatton FL; Ruda M; Lansalot M; D'Agosto F; Malmström E; Carlmark A
    Biomacromolecules; 2016 Apr; 17(4):1414-24. PubMed ID: 26913868
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Microfluidics for real-time direct monitoring of self- and co-assembly biomolecular processes.
    Arnon ZA; Gilead S; Gazit E
    Nanotechnology; 2019 Mar; 30(10):102001. PubMed ID: 30537683
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Recent advances in superhydrophobic nanomaterials and nanoscale systems.
    Nagappan S; Park SS; Ha CS
    J Nanosci Nanotechnol; 2014 Feb; 14(2):1441-62. PubMed ID: 24749434
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Protein self-assembly via supramolecular strategies.
    Bai Y; Luo Q; Liu J
    Chem Soc Rev; 2016 May; 45(10):2756-67. PubMed ID: 27080059
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Supramolecular chemistry-general principles and selected examples from anion recognition and metallosupramolecular chemistry.
    Albrecht M
    Naturwissenschaften; 2007 Dec; 94(12):951-66. PubMed ID: 17646953
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Soft Materials with Diverse Suprastructures via the Self-Assembly of Metal-Organic Complexes.
    Sun Y; Chen C; Stang PJ
    Acc Chem Res; 2019 Mar; 52(3):802-817. PubMed ID: 30794371
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Self-assembly of DNA-based Nanomaterials and Potential Application in Drug Delivery.
    Zhao Z; Liang F; Liu S
    Curr Top Med Chem; 2017; 17(16):1829-1842. PubMed ID: 27875975
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.