These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 30734445)

  • 21. Selective control of reconfigurable chiral plasmonic metamolecules.
    Kuzyk A; Urban MJ; Idili A; Ricci F; Liu N
    Sci Adv; 2017 Apr; 3(4):e1602803. PubMed ID: 28439556
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular Recognition in the Colloidal World.
    Elacqua E; Zheng X; Shillingford C; Liu M; Weck M
    Acc Chem Res; 2017 Nov; 50(11):2756-2766. PubMed ID: 28984441
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phase Transition and Self-Stabilization of Light-Mediated Metal Nanoparticle Assemblies.
    Han F; Yan Z
    ACS Nano; 2020 Jun; 14(6):6616-6625. PubMed ID: 32422042
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Self-Assembled Chiral Photonic Crystals from a Colloidal Helix Racemate.
    Lei QL; Ni R; Ma YQ
    ACS Nano; 2018 Jul; 12(7):6860-6870. PubMed ID: 29889494
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Helical Magnetic Field-Induced Real-Time Plasmonic Chirality Modulation.
    Jeong KJ; Lee DK; Tran VT; Wang C; Lv J; Park J; Tang Z; Lee J
    ACS Nano; 2020 Jun; 14(6):7152-7160. PubMed ID: 32298072
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spontaneous Self-Formation of 3D Plasmonic Optical Structures.
    Choi I; Shin Y; Song J; Hong S; Park Y; Kim D; Kang T; Lee LP
    ACS Nano; 2016 Aug; 10(8):7639-45. PubMed ID: 27348191
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rotation and Negative Torque in Electrodynamically Bound Nanoparticle Dimers.
    Sule N; Yifat Y; Gray SK; Scherer NF
    Nano Lett; 2017 Nov; 17(11):6548-6556. PubMed ID: 28961013
    [TBL] [Abstract][Full Text] [Related]  

  • 28. All-optical reconfigurable chiral meta-molecules.
    Lin L; Lepeshov S; Krasnok A; Jiang T; Peng X; Korgel BA; Alù A; Zheng Y
    Mater Today (Kidlington); 2019 May; 25():10-20. PubMed ID: 31777449
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Halogen Bonding-Driven Reversible Self-Assembly of Plasmonic Colloidal Molecules.
    Dong W; Zhang Y; Yi C; Chang JJ; Ye S; Nie Z
    ACS Nano; 2023 Feb; 17(3):3047-3054. PubMed ID: 36603151
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hybridized Guided-Mode Resonances via Colloidal Plasmonic Self-Assembled Grating.
    Sarkar S; Gupta V; Kumar M; Schubert J; Probst PT; Joseph J; König TAF
    ACS Appl Mater Interfaces; 2019 Apr; 11(14):13752-13760. PubMed ID: 30874424
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Precision nanoengineering for functional self-assemblies across length scales.
    Nonappa
    Chem Commun (Camb); 2023 Nov; 59(93):13800-13819. PubMed ID: 37902292
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assembly and Healing: Capacitive and Conductive Plasmonic Interfacing via a Unified and Clean Wet Chemistry Route.
    Ye M; Song L; Ye Y; Deng Z
    J Am Chem Soc; 2023 Nov; 145(47):25653-25663. PubMed ID: 37963330
    [TBL] [Abstract][Full Text] [Related]  

  • 33. One-dimensional self-assembly of planar pi-conjugated molecules: adaptable building blocks for organic nanodevices.
    Zang L; Che Y; Moore JS
    Acc Chem Res; 2008 Dec; 41(12):1596-608. PubMed ID: 18616298
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bottom-up assembly of colloidal gold and silver nanostructures for designable plasmonic structures and metamaterials.
    Gwo S; Lin MH; He CL; Chen HY; Teranishi T
    Langmuir; 2012 Jun; 28(24):8902-8. PubMed ID: 22372768
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Self-Assembled Tetratic Crystals by Orthogonal Colloidal Force.
    Li S; He J; Qiao S; Zhang X; Liu B
    Small; 2023 Jun; 19(25):e2300642. PubMed ID: 36932933
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microscale Self-Assembly of Upconversion Nanoparticles Driven by Block Copolymer.
    Su Q; Zhou MT; Zhou MZ; Sun Q; Ai T; Su Y
    Front Chem; 2020; 8():836. PubMed ID: 33094100
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gold Nanoparticle Plasmonic Superlattices as Surface-Enhanced Raman Spectroscopy Substrates.
    Matricardi C; Hanske C; Garcia-Pomar JL; Langer J; Mihi A; Liz-Marzán LM
    ACS Nano; 2018 Aug; 12(8):8531-8539. PubMed ID: 30106555
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multicomponent Plasmonic Nanoparticles: From Heterostructured Nanoparticles to Colloidal Composite Nanostructures.
    Ha M; Kim JH; You M; Li Q; Fan C; Nam JM
    Chem Rev; 2019 Dec; 119(24):12208-12278. PubMed ID: 31794202
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biological Molecules-Governed Plasmonic Nanoparticle Dimers with Tailored Optical Behaviors.
    Zhao Y; Sun M; Ma W; Kuang H; Xu C
    J Phys Chem Lett; 2017 Nov; 8(22):5633-5642. PubMed ID: 29094951
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Manipulating the confinement of electromagnetic field in size-specific gold nanoparticles dimers and trimers.
    Pal SK; Chatterjee H; Ghosh SK
    RSC Adv; 2019 Dec; 9(72):42145-42154. PubMed ID: 35542872
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.