BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 30734570)

  • 1. Trace elements removal ability and antioxidant activity of Phragmites australis (from Algeria).
    Sellal A; Belattar R; Bouzidi A
    Int J Phytoremediation; 2019; 21(5):456-460. PubMed ID: 30734570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparison of trace metal bioaccumulation and distribution in Typha latifolia and Phragmites australis: implication for phytoremediation.
    Klink A
    Environ Sci Pollut Res Int; 2017 Feb; 24(4):3843-3852. PubMed ID: 27900625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trace metal concentrations and their transfer from sediment to leaves of four common aquatic macrophytes.
    Łojko R; Polechońska L; Klink A; Kosiba P
    Environ Sci Pollut Res Int; 2015 Oct; 22(19):15123-31. PubMed ID: 26004561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arundo donax as a potential biomonitor of trace element contamination in water and sediment.
    Bonanno G
    Ecotoxicol Environ Saf; 2012 Jun; 80():20-7. PubMed ID: 22364831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The traces elements absorption, accumulation and translocation ability of
    Sellal A; Belattar R
    Int J Phytoremediation; 2024; 26(5):618-625. PubMed ID: 37723665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Can liming change root anatomy, biomass allocation and trace element distribution among plant parts of Salix × smithiana in trace element-polluted soils?
    Vondráčková S; Tlustoš P; Száková J
    Environ Sci Pollut Res Int; 2017 Aug; 24(23):19201-19210. PubMed ID: 28664494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of Phragmites australis (common reed) for heavy metals phytoremediation of estuarine sediments.
    Cicero-Fernández D; Peña-Fernández M; Expósito-Camargo JA; Antizar-Ladislao B
    Int J Phytoremediation; 2016; 18(6):575-82. PubMed ID: 26375048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioaccumulation of thallium and other trace metals in Biscutella laevigata nearby a decommissioned zinc-lead mine (Northeastern Italian Alps).
    Pavoni E; Petranich E; Adami G; Baracchini E; Crosera M; Emili A; Lenaz D; Higueras P; Covelli S
    J Environ Manage; 2017 Jan; 186(Pt 2):214-224. PubMed ID: 27484741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trace element accumulation and distribution in the organs of Phragmites australis (common reed) and biomonitoring applications.
    Bonanno G
    Ecotoxicol Environ Saf; 2011 May; 74(4):1057-64. PubMed ID: 21316762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accumulation of heavy metals in a macrophyte Phragmites australis: implications to phytoremediation in the Arabian Peninsula wadis.
    Al-Homaidan AA; Al-Otaibi TG; El-Sheikh MA; Al-Ghanayem AA; Ameen F
    Environ Monit Assess; 2020 Feb; 192(3):202. PubMed ID: 32107648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative performance of trace element bioaccumulation and biomonitoring in the plant species Typha domingensis, Phragmites australis and Arundo donax.
    Bonanno G
    Ecotoxicol Environ Saf; 2013 Nov; 97():124-30. PubMed ID: 23932595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of Cu, Zn, Pb, and Cr from Yangtze Estuary Using the
    Huang X; Zhao F; Yu G; Song C; Geng Z; Zhuang P
    Biomed Res Int; 2017; 2017():6201048. PubMed ID: 28717650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions of metals affect their distribution in tissues of Phragmites australis.
    Weis JS; Glover T; Weis P
    Environ Pollut; 2004 Oct; 131(3):409-15. PubMed ID: 15261404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Translocation of metal ions from soil to tobacco roots and their concentration in the plant parts.
    da Silva CP; de Almeida TE; Zittel R; de Oliveira Stremel TR; Domingues CE; Kordiak J; de Campos SX
    Environ Monit Assess; 2016 Dec; 188(12):663. PubMed ID: 27837364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of macro and microelement accumulation capability of two aquatic plants.
    Baldantoni D; Alfani A; Di Tommasi P; Bartoli G; De Santo AV
    Environ Pollut; 2004 Jul; 130(2):149-56. PubMed ID: 15158029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of the potential of Erodium glaucophyllum L. for phytoremediation of metal-polluted arid soils.
    Jeddi K; Chaieb M
    Environ Sci Pollut Res Int; 2018 Dec; 25(36):36636-36644. PubMed ID: 30377962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioconcentration of trace metals in the tissues of two leafy vegetables widely consumed in South West Nigeria.
    Tyokumbur ET; Okorie T
    Biol Trace Elem Res; 2011 May; 140(2):215-24. PubMed ID: 20393812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heavy metal bioaccumulation by Miscanthus sacchariflorus and its potential for removing metals from the Dongting Lake wetlands, China.
    Yao X; Niu Y; Li Y; Zou D; Ding X; Bian H
    Environ Sci Pollut Res Int; 2018 Jul; 25(20):20003-20011. PubMed ID: 29744779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomonitoring trace metal contamination by seven sympatric alpine species in Eastern Tibetan Plateau.
    Bing H; Wu Y; Zhou J; Sun H
    Chemosphere; 2016 Dec; 165():388-398. PubMed ID: 27668716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uptake and distribution of Zn, Cu, Cd, and Pb in an aquatic plant Potamogeton natans.
    Fritioff A; Greger M
    Chemosphere; 2006 Apr; 63(2):220-7. PubMed ID: 16213560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.