These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

426 related articles for article (PubMed ID: 30735029)

  • 41. Mitigating Swelling of the Solid Electrolyte Interphase using an Inorganic Anion Switch for Low-temperature Lithium-ion Batteries.
    Liang JY; Zhang Y; Xin S; Tan SJ; Meng XH; Wang WP; Shi JL; Wang ZB; Wang F; Wan LJ; Guo YG
    Angew Chem Int Ed Engl; 2023 Apr; 62(16):e202300384. PubMed ID: 36840689
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Deciphering the effects of electrolyte concentration on the performance of lithium batteries by correlative surface characterization.
    Li S; Zhang G; Meng C; Wang C; Li X; Liu H; Ning Y; Fu Q
    J Chem Phys; 2022 Dec; 157(22):224203. PubMed ID: 36546825
    [TBL] [Abstract][Full Text] [Related]  

  • 43. An operando X-ray diffraction study of chloroaluminate anion-graphite intercalation in aluminum batteries.
    Pan CJ; Yuan C; Zhu G; Zhang Q; Huang CJ; Lin MC; Angell M; Hwang BJ; Kaghazchi P; Dai H
    Proc Natl Acad Sci U S A; 2018 May; 115(22):5670-5675. PubMed ID: 29760096
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Revealing Surfactant Effect of Trifluoromethylbenzene in Medium-Concentrated PC Electrolyte for Advanced Lithium-Ion Batteries.
    Qin M; Zeng Z; Liu X; Wu Y; He R; Zhong W; Cheng S; Xie J
    Adv Sci (Weinh); 2023 Apr; 10(12):e2206648. PubMed ID: 36807870
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Highly Improved Cycling Stability of Anion De-/Intercalation in the Graphite Cathode for Dual-Ion Batteries.
    Li WH; Ning QL; Xi XT; Hou BH; Guo JZ; Yang Y; Chen B; Wu XL
    Adv Mater; 2019 Jan; 31(4):e1804766. PubMed ID: 30489656
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Composite Electrolyte for All-Solid-State Lithium Batteries: Low-Temperature Fabrication and Conductivity Enhancement.
    Lee SD; Jung KN; Kim H; Shin HS; Song SW; Park MS; Lee JW
    ChemSusChem; 2017 May; 10(10):2175-2181. PubMed ID: 28317277
    [TBL] [Abstract][Full Text] [Related]  

  • 47. ZIF-8-Based Quasi-Solid-State Electrolyte for Lithium Batteries.
    Sun C; Zhang JH; Yuan XF; Duan JN; Deng SW; Fan JM; Chang JK; Zheng MS; Dong QF
    ACS Appl Mater Interfaces; 2019 Dec; 11(50):46671-46677. PubMed ID: 31738039
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hindered Glymes for Graphite-Compatible Electrolytes.
    Shanmukaraj D; Grugeon S; Laruelle S; Armand M
    ChemSusChem; 2015 Aug; 8(16):2691-5. PubMed ID: 26212607
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Interphase Evolution of a Lithium-Ion/Oxygen Battery.
    Elia GA; Bresser D; Reiter J; Oberhumer P; Sun YK; Scrosati B; Passerini S; Hassoun J
    ACS Appl Mater Interfaces; 2015 Oct; 7(40):22638-43. PubMed ID: 26389522
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nature of the Cathode-Electrolyte Interface in Highly Concentrated Electrolytes Used in Graphite Dual-Ion Batteries.
    Kotronia A; Asfaw HD; Tai CW; Hahlin M; Brandell D; Edström K
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):3867-3880. PubMed ID: 33434003
    [TBL] [Abstract][Full Text] [Related]  

  • 51. N-Allyl- N, N-Bis(trimethylsilyl)amine as a Novel Electrolyte Additive To Enhance the Interfacial Stability of a Ni-Rich Electrode for Lithium-Ion Batteries.
    Zheng Q; Xing L; Yang X; Li X; Ye C; Wang K; Huang Q; Li W
    ACS Appl Mater Interfaces; 2018 May; 10(19):16843-16851. PubMed ID: 29687987
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries.
    Tu Z; Nath P; Lu Y; Tikekar MD; Archer LA
    Acc Chem Res; 2015 Nov; 48(11):2947-56. PubMed ID: 26496667
    [TBL] [Abstract][Full Text] [Related]  

  • 53. High-Performance Phosphorus-Graphite Dual-Ion Battery.
    Yu D; Cheng L; Chen M; Wang J; Zhou W; Wei W; Wang H
    ACS Appl Mater Interfaces; 2019 Dec; 11(49):45755-45762. PubMed ID: 31729853
    [TBL] [Abstract][Full Text] [Related]  

  • 54. An "Ether-In-Water" Electrolyte Boosts Stable Interfacial Chemistry for Aqueous Lithium-Ion Batteries.
    Shang Y; Chen N; Li Y; Chen S; Lai J; Huang Y; Qu W; Wu F; Chen R
    Adv Mater; 2020 Oct; 32(40):e2004017. PubMed ID: 32876955
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Enhancing the High-Voltage Cycling Performance of LiNi
    Zheng X; Huang T; Pan Y; Wang W; Fang G; Ding K; Wu M
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):18758-18765. PubMed ID: 28481504
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Reversible Cycling of Graphite Electrodes in Propylene Carbonate Electrolytes Enabled by Ethyl Isothiocyanate.
    Li X; Guo L; Li J; Wang E; Liu T; Wang G; Sun K; Liu C; Peng Z
    ACS Appl Mater Interfaces; 2021 Jun; 13(22):26023-26033. PubMed ID: 34032410
    [TBL] [Abstract][Full Text] [Related]  

  • 57. All-solid-state lithium organic battery with composite polymer electrolyte and pillar[5]quinone cathode.
    Zhu Z; Hong M; Guo D; Shi J; Tao Z; Chen J
    J Am Chem Soc; 2014 Nov; 136(47):16461-4. PubMed ID: 25383544
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Properties of the Interphase Formed between Argyrodite-Type Li
    Simon FJ; Hanauer M; Henss A; Richter FH; Janek J
    ACS Appl Mater Interfaces; 2019 Nov; 11(45):42186-42196. PubMed ID: 31613597
    [TBL] [Abstract][Full Text] [Related]  

  • 59. TiP
    Wen Y; Chen L; Pang Y; Guo Z; Bin D; Wang YG; Wang C; Xia Y
    ACS Appl Mater Interfaces; 2017 Mar; 9(9):8075-8082. PubMed ID: 28212003
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Novel Low-Temperature Electrolyte Using Isoxazole as the Main Solvent for Lithium-Ion Batteries.
    Tan S; Rodrigo UND; Shadike Z; Lucht B; Xu K; Wang C; Yang XQ; Hu E
    ACS Appl Mater Interfaces; 2021 Jun; 13(21):24995-25001. PubMed ID: 34010556
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.