BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 30735031)

  • 1. Detecting a Zeptogram of Pyridine with a Hybrid Plasmonic-Photonic Nanosensor.
    Proust J; Martin J; Gérard D; Bijeon JL; Plain J
    ACS Sens; 2019 Mar; 4(3):586-594. PubMed ID: 30735031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmonic Nanosensor Array for Multiplexed DNA-based Pathogen Detection.
    Zopf D; Pittner A; Dathe A; Grosse N; Csáki A; Arstila K; Toppari JJ; Schott W; Dontsov D; Uhlrich G; Fritzsche W; Stranik O
    ACS Sens; 2019 Feb; 4(2):335-343. PubMed ID: 30657315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photonic-plasmonic mode coupling in on-chip integrated optoplasmonic molecules.
    Ahn W; Boriskina SV; Hong Y; Reinhard BM
    ACS Nano; 2012 Jan; 6(1):951-60. PubMed ID: 22148502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flexible and Tunable 3D Gold Nanocups Platform as Plasmonic Biosensor for Specific Dual LSPR-SERS Immuno-Detection.
    Focsan M; Craciun AM; Potara M; Leordean C; Vulpoi A; Maniu D; Astilean S
    Sci Rep; 2017 Oct; 7(1):14240. PubMed ID: 29079816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybrid photonic-plasmonic molecule based on metal/Si disks.
    Wang Q; Zhao H; Du X; Zhang W; Qiu M; Li Q
    Opt Express; 2013 May; 21(9):11037-47. PubMed ID: 23669960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hybrid plasmon photonic crystal resonance grating for integrated spectrometer biosensor.
    Guo H; Guo J
    Opt Lett; 2015 Jan; 40(2):249-52. PubMed ID: 25679856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core.
    Rifat AA; Mahdiraji GA; Chow DM; Shee YG; Ahmed R; Adikan FR
    Sensors (Basel); 2015 May; 15(5):11499-510. PubMed ID: 25996510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanocavity plasmonic device for ultrabroadband single molecule sensing.
    Gelfand RM; Bruderer L; Mohseni H
    Opt Lett; 2009 Apr; 34(7):1087-9. PubMed ID: 19340228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid integrated plasmonic-photonic waveguides for on-chip localized surface plasmon resonance (LSPR) sensing and spectroscopy.
    Chamanzar M; Xia Z; Yegnanarayanan S; Adibi A
    Opt Express; 2013 Dec; 21(26):32086-98. PubMed ID: 24514803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Active Delivery of Single DNA Molecules into a Plasmonic Nanopore for Label-Free Optical Sensing.
    Shi X; Verschueren DV; Dekker C
    Nano Lett; 2018 Dec; 18(12):8003-8010. PubMed ID: 30460853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybrid photon-plasmon nanowire lasers.
    Wu X; Xiao Y; Meng C; Zhang X; Yu S; Wang Y; Yang C; Guo X; Ning CZ; Tong L
    Nano Lett; 2013; 13(11):5654-9. PubMed ID: 24144390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical scattering resonances of single and coupled dimer plasmonic nanoantennas.
    Muskens OL; Giannini V; Sánchez-Gil JA; Gómez Rivas J
    Opt Express; 2007 Dec; 15(26):17736-46. PubMed ID: 19551070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmonic nanofocusing of light in an integrated silicon photonics platform.
    Desiatov B; Goykhman I; Levy U
    Opt Express; 2011 Jul; 19(14):13150-7. PubMed ID: 21747468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mercaptopyridine-Functionalized Gold Nanoparticles for Fiber-Optic Surface Plasmon Resonance Hg
    Yuan H; Ji W; Chu S; Liu Q; Qian S; Guang J; Wang J; Han X; Masson JF; Peng W
    ACS Sens; 2019 Mar; 4(3):704-710. PubMed ID: 30785267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A simple and efficient design to improve the detection of biotin-streptavidin interaction with plasmonic nanobiosensors.
    Focsan M; Campu A; Craciun AM; Potara M; Leordean C; Maniu D; Astilean S
    Biosens Bioelectron; 2016 Dec; 86():728-735. PubMed ID: 27476053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein binding kinetics quantification via coupled plasmonic-photonic resonance nanosensors in generic microplate reader.
    Dang T; Hu W; Zhang W; Song Z; Wang Y; Chen M; Xu H; Liu GL
    Biosens Bioelectron; 2019 Oct; 142():111494. PubMed ID: 31319329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Mass-Producible and Versatile Sensing System: Localized Surface Plasmon Resonance Excited by Individual Waveguide Modes.
    Ding Z; Stubbs JM; McRae D; Blacquiere JM; Lagugné-Labarthet F; Mittler S
    ACS Sens; 2018 Feb; 3(2):334-341. PubMed ID: 29318873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-loss surface-plasmonic nanobeam cavities.
    Kim MK; Lee SH; Choi M; Ahn BH; Park N; Lee YH; Min B
    Opt Express; 2010 May; 18(11):11089-96. PubMed ID: 20588966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tailoring spatiotemporal light confinement in single plasmonic nanoantennas.
    Hanke T; Cesar J; Knittel V; Trügler A; Hohenester U; Leitenstorfer A; Bratschitsch R
    Nano Lett; 2012 Feb; 12(2):992-6. PubMed ID: 22268812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photonic-plasmonic-coupled nanoantennas for polarization-controlled multispectral nanofocusing.
    Trevino J; Walsh GF; Pecora EF; Boriskina SV; Dal Negro L
    Opt Lett; 2013 Nov; 38(22):4861-3. PubMed ID: 24322151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.