These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 30735098)

  • 1. Calorimetry for studying the adsorption of proteins in hydrophobic interaction chromatography.
    Rodler A; Ueberbacher R; Beyer B; Jungbauer A
    Prep Biochem Biotechnol; 2019; 49(1):1-20. PubMed ID: 30735098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrophobic interaction chromatography of proteins: Studies of unfolding upon adsorption by isothermal titration calorimetry.
    Rodler A; Beyer B; Ueberbacher R; Hahn R; Jungbauer A
    J Sep Sci; 2018 Aug; 41(15):3069-3080. PubMed ID: 29877629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational changes of antibodies upon adsorption onto hydrophobic interaction chromatography surfaces.
    Beyer B; Jungbauer A
    J Chromatogr A; 2018 Jun; 1552():60-66. PubMed ID: 29631916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microcalorimetric studies on the interaction mechanism between proteins and hydrophobic solid surfaces in hydrophobic interaction chromatography: effects of salts, hydrophobicity of the sorbent, and structure of the protein.
    Lin FY; Chen WY; Hearn MT
    Anal Chem; 2001 Aug; 73(16):3875-83. PubMed ID: 11534710
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrophobic interaction chromatography of proteins: thermodynamic analysis of conformational changes.
    Ueberbacher R; Rodler A; Hahn R; Jungbauer A
    J Chromatogr A; 2010 Jan; 1217(2):184-90. PubMed ID: 19501365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microcalorimetric studies of interactions between proteins and hydrophobic ligands in hydrophobic interaction chromatography: effects of ligand chain length, density and the amount of bound protein.
    Lina FY; Chen WY; Ruaan RC; Huang HM
    J Chromatogr A; 2000 Mar; 872(1-2):37-47. PubMed ID: 10749485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microcalorimetric study of adsorption and disassembling of virus-like particles on anion exchange chromatography media.
    Yu M; Zhang S; Zhang Y; Yang Y; Ma G; Su Z
    J Chromatogr A; 2015 Apr; 1388():195-206. PubMed ID: 25744549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamic modelling of hydrophobic interaction chromatography of biomolecules in the presence of salt.
    Mirani MR; Rahimpour F
    J Chromatogr A; 2015 Nov; 1422():170-177. PubMed ID: 26493472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular mechanism of hydrophobic charge-induction chromatography: interactions between the immobilized 4-mercaptoethyl-pyridine ligand and IgG.
    Lin DQ; Tong HF; Wang HY; Shao S; Yao SJ
    J Chromatogr A; 2012 Oct; 1260():143-53. PubMed ID: 22975355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A microcalorimetric study of molecular interactions between immunoglobulin G and hydrophobic charge-induction ligand.
    Yuan XM; Lin DQ; Zhang QL; Gao D; Yao SJ
    J Chromatogr A; 2016 Apr; 1443():145-51. PubMed ID: 27017449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calorimetric investigation of the adsorption of nitrogen bases and nucleosides on a hydrophobic interaction sorbent.
    Phillips JM; Pinto NG
    J Chromatogr A; 2004 May; 1036(1):79-86. PubMed ID: 15139416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrophobic interaction chromatography of proteins. III. Unfolding of proteins upon adsorption.
    Jungbauer A; Machold C; Hahn R
    J Chromatogr A; 2005 Jun; 1079(1-2):221-8. PubMed ID: 16038308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamic analysis of r-hGH-polymer surface Interaction using isothermal titration calorimetry.
    Parikh V; Gupta P
    Growth Horm IGF Res; 2018; 42-43():86-93. PubMed ID: 30368133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies of lysozyme binding to histamine as a ligand for hydrophobic charge induction chromatography.
    Shi QH; Shen FF; Sun S
    Biotechnol Prog; 2010; 26(1):134-41. PubMed ID: 19785039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of isothermal titration calorimetry for characterizing thermodynamic parameters of biomolecular interactions: peptide self-assembly and protein adsorption case studies.
    Kabiri M; Unsworth LD
    Biomacromolecules; 2014 Oct; 15(10):3463-73. PubMed ID: 25131962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isothermal titration calorimetry for studying protein-ligand interactions.
    Damian L
    Methods Mol Biol; 2013; 1008():103-18. PubMed ID: 23729250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature dependence of adsorption of PEGylated lysozyme and pure polyethylene glycol on a hydrophobic resin: comparison of isothermal titration calorimetry and van't Hoff data.
    Werner A; Hackemann E; Hasse H
    J Chromatogr A; 2014 Aug; 1356():188-96. PubMed ID: 25016322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamic analysis of polyphenols retention in polymer resin chromatography by van't Hoff plot and isothermal titration calorimetry.
    Simoes-Cardoso JC; Yoshimoto N; Yamamoto S
    J Chromatogr A; 2019 Dec; 1608():460405. PubMed ID: 31378530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Suitability of commercial hydrophobic interaction sorbents for temperature-controlled protein liquid chromatography under low salt conditions.
    Müller TK; Franzreb M
    J Chromatogr A; 2012 Oct; 1260():88-96. PubMed ID: 22954746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of hydrophobic interaction adsorption of bovine serum albumin under overloaded conditions using flow microcalorimetry.
    Esquibel-King MA; Dias-Cabral AC; Queiroz JA; Pinto NG
    J Chromatogr A; 1999 Dec; 865(1-2):111-22. PubMed ID: 10674934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.