BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 30735164)

  • 1. Additive Manufacturing of Functionally Graded Ceramic Materials by Stereolithography.
    Gonzalez P; Schwarzer E; Scheithauer U; Kooijmans N; Moritz T
    J Vis Exp; 2019 Jan; (143):. PubMed ID: 30735164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stereolithography: A new method for processing dental ceramics by additive computer-aided manufacturing.
    Dehurtevent M; Robberecht L; Hornez JC; Thuault A; Deveaux E; Béhin P
    Dent Mater; 2017 May; 33(5):477-485. PubMed ID: 28318544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-material Ceramic-Based Components - Additive Manufacturing of Black-and-white Zirconia Components by Thermoplastic 3D-Printing (CerAM - T3DP).
    Weingarten S; Scheithauer U; Johne R; Abel J; Schwarzer E; Moritz T; Michaelis A
    J Vis Exp; 2019 Jan; (143):. PubMed ID: 30663650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Additive Manufacturing Technologies Used for Processing Polymers: Current Status and Potential Application in Prosthetic Dentistry.
    Revilla-León M; Özcan M
    J Prosthodont; 2019 Feb; 28(2):146-158. PubMed ID: 29682823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D printing processes for photocurable polymeric materials: technologies, materials, and future trends.
    Taormina G; Sciancalepore C; Messori M; Bondioli F
    J Appl Biomater Funct Mater; 2018 Jul; 16(3):151-160. PubMed ID: 29609487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stereolithography-Based Additive Manufacturing of High-Performance Osteoinductive Calcium Phosphate Ceramics by a Digital Light-Processing System.
    Wei Y; Zhao D; Cao Q; Wang J; Wu Y; Yuan B; Li X; Chen X; Zhou Y; Yang X; Zhu X; Tu C; Zhang X
    ACS Biomater Sci Eng; 2020 Mar; 6(3):1787-1797. PubMed ID: 33455401
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stereolithographic Additive Manufacturing of High Precision Glass Ceramic Parts.
    Schönherr JA; Baumgartner S; Hartmann M; Stampfl J
    Materials (Basel); 2020 Mar; 13(7):. PubMed ID: 32218270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D Metal Printing - Additive Manufacturing Technologies for Frameworks of Implant-Borne Fixed Dental Prosthesis.
    Revilla León M; Klemm IM; García-Arranz J; Özcan M
    Eur J Prosthodont Restor Dent; 2017 Sep; 25(3):143-147. PubMed ID: 28869368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of SLA-Based Al
    Chugunov S; Adams NA; Akhatov I
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32899496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monoacryloyl esters of carbohydrates: synthesis, polymerization and application in ceramic technology.
    Wiecinska P; Mizerski T; Szafran M
    Carbohydr Polym; 2014 Oct; 111():610-8. PubMed ID: 25037395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shrinkage Compensation and Effect of Building Orientation on Mechanical Properties of Ceramic Stereolithography Parts.
    Arora P; Mostafa KG; Russell E; Dehgahi S; Butt SU; Talamona D; Qureshi AJ
    Polymers (Basel); 2023 Sep; 15(19):. PubMed ID: 37835926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Functionally Graded PICN Material for Biomimetic CAD-CAM Blocks.
    Eldafrawy M; Nguyen JF; Mainjot AK; Sadoun MJ
    J Dent Res; 2018 Nov; 97(12):1324-1330. PubMed ID: 29975849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ceramic-Based 4D Components: Additive Manufacturing (AM) of Ceramic-Based Functionally Graded Materials (FGM) by Thermoplastic 3D Printing (T3DP).
    Scheithauer U; Weingarten S; Johne R; Schwarzer E; Abel J; Richter HJ; Moritz T; Michaelis A
    Materials (Basel); 2017 Nov; 10(12):. PubMed ID: 29182541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and Chemical Analysis of the Zirconia-Veneering Ceramic Interface.
    Inokoshi M; Yoshihara K; Nagaoka N; Nakanishi M; De Munck J; Minakuchi S; Vanmeensel K; Zhang F; Yoshida Y; Vleugels J; Naert I; Van Meerbeek B
    J Dent Res; 2016 Jan; 95(1):102-9. PubMed ID: 26442946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D printed porous ceramic scaffolds for bone tissue engineering: a review.
    Wen Y; Xun S; Haoye M; Baichuan S; Peng C; Xuejian L; Kaihong Z; Xuan Y; Jiang P; Shibi L
    Biomater Sci; 2017 Aug; 5(9):1690-1698. PubMed ID: 28686244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical performance of polymer-infiltrated zirconia ceramics.
    Li J; Zhang XH; Cui BC; Lin YH; Deng XL; Li M; Nan CW
    J Dent; 2017 Mar; 58():60-66. PubMed ID: 28159508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D printing restorative materials using a stereolithographic technique: a systematic review.
    Della Bona A; Cantelli V; Britto VT; Collares KF; Stansbury JW
    Dent Mater; 2021 Feb; 37(2):336-350. PubMed ID: 33353734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Four-Dimensional Printing Hierarchy Scaffolds with Highly Biocompatible Smart Polymers for Tissue Engineering Applications.
    Miao S; Zhu W; Castro NJ; Leng J; Zhang LG
    Tissue Eng Part C Methods; 2016 Oct; 22(10):952-963. PubMed ID: 28195832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emulsion Inks for 3D Printing of High Porosity Materials.
    Sears NA; Dhavalikar PS; Cosgriff-Hernandez EM
    Macromol Rapid Commun; 2016 Aug; 37(16):1369-74. PubMed ID: 27305061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Mechanical properties of polylactic acid/beta-tricalcium phosphate composite scaffold with double channels based on three-dimensional printing technique].
    Lian Q; Zhuang P; Li C; Jin Z; Li D
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):309-13. PubMed ID: 24844010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.