BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 30735194)

  • 1. Live Cell Analysis of Shear Stress on Pseudomonas aeruginosa Using an Automated Higher-Throughput Microfluidic System.
    Sutlief AL; Valquier-Flynn H; Wilson C; Perez M; Kleinschmidt H; Schofield BJ; Delmain E; Holmes AE; Wentworth CD
    J Vis Exp; 2019 Jan; (143):. PubMed ID: 30735194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multichannel Microfluidic Platform for Temporal-Spatial Investigation of Niche Roles of Pseudomonas aeruginosa and Escherichia coli within a Dual-Species Biofilm.
    Cheah H; Bae S
    Appl Environ Microbiol; 2023 Jul; 89(7):e0065123. PubMed ID: 37382537
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micropatterned biofilm formations by laminar flow-templating.
    Aznaveh NB; Safdar M; Wolfaardt G; Greener J
    Lab Chip; 2014 Aug; 14(15):2666-72. PubMed ID: 24722812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of the rotating wall vessel technology to study the effect of shear stress on growth behaviour of Pseudomonas aeruginosa PA01.
    Crabbé A; De Boever P; Van Houdt R; Moors H; Mergeay M; Cornelis P
    Environ Microbiol; 2008 Aug; 10(8):2098-110. PubMed ID: 18430020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluidic resistance control enables high-throughput establishment of mixed-species biofilms.
    Hansen MF; Torp AM; Madsen JS; Røder HL; Burmølle M
    Biotechniques; 2019 May; 66(5):235-239. PubMed ID: 31050304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiology and genetic traits of reverse osmosis membrane biofilms: a case study with Pseudomonas aeruginosa.
    Herzberg M; Elimelech M
    ISME J; 2008 Feb; 2(2):180-94. PubMed ID: 18049459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New device for high-throughput viability screening of flow biofilms.
    Benoit MR; Conant CG; Ionescu-Zanetti C; Schwartz M; Matin A
    Appl Environ Microbiol; 2010 Jul; 76(13):4136-42. PubMed ID: 20435763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Shear Stress on Pseudomonas aeruginosa Isolated from the Cystic Fibrosis Lung.
    Dingemans J; Monsieurs P; Yu SH; Crabbé A; Förstner KU; Malfroot A; Cornelis P; Van Houdt R
    mBio; 2016 Aug; 7(4):. PubMed ID: 27486191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Both Pseudomonas aeruginosa and Candida albicans Accumulate Greater Biomass in Dual-Species Biofilms under Flow.
    Kasetty S; Mould DL; Hogan DA; Nadell CD
    mSphere; 2021 Jun; 6(3):e0041621. PubMed ID: 34160236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Applying the digital image correlation method to estimate the mechanical properties of bacterial biofilms subjected to a wall shear stress.
    Mathias JD; Stoodley P
    Biofouling; 2009 Nov; 25(8):695-703. PubMed ID: 20183128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Image-based 384-well high-throughput screening method for the discovery of skyllamycins A to C as biofilm inhibitors and inducers of biofilm detachment in Pseudomonas aeruginosa.
    Navarro G; Cheng AT; Peach KC; Bray WM; Bernan VS; Yildiz FH; Linington RG
    Antimicrob Agents Chemother; 2014; 58(2):1092-9. PubMed ID: 24295976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biofilm responses to smooth flow fields and chemical gradients in novel microfluidic flow cells.
    Song JL; Au KH; Huynh KT; Packman AI
    Biotechnol Bioeng; 2014 Mar; 111(3):597-607. PubMed ID: 24038055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of fluorescence foldscope as an effective tool for detection of biofilm formation in
    Deshamukhya C; Das BJ; Chetri S; Paul D; Chanda DD; Banerjee T; Bhattacharjee A
    Indian J Med Microbiol; 2020; 38(3 & 4):397-400. PubMed ID: 33154253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Statistical analysis of Pseudomonas aeruginosa biofilm development: impact of mutations in genes involved in twitching motility, cell-to-cell signaling, and stationary-phase sigma factor expression.
    Heydorn A; Ersbøll B; Kato J; Hentzer M; Parsek MR; Tolker-Nielsen T; Givskov M; Molin S
    Appl Environ Microbiol; 2002 Apr; 68(4):2008-17. PubMed ID: 11916724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integration and proliferation of Pseudomonas aeruginosa PA01 in multispecies biofilms.
    Ghadakpour M; Bester E; Liss SN; Gardam M; Droppo I; Hota S; Wolfaardt GM
    Microb Ecol; 2014 Jul; 68(1):121-31. PubMed ID: 24577741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling growth and quorum sensing in biofilms grown in microfluidic chambers.
    Janakiraman V; Englert D; Jayaraman A; Baskaran H
    Ann Biomed Eng; 2009 Jun; 37(6):1206-16. PubMed ID: 19291402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficacy of Lytic Phage Cocktails on
    Kifelew LG; Warner MS; Morales S; Thomas N; Gordon DL; Mitchell JG; Speck PG
    Viruses; 2020 May; 12(5):. PubMed ID: 32443619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of microbial biofilm arrays by geometric control of cell adhesion.
    Eun YJ; Weibel DB
    Langmuir; 2009 Apr; 25(8):4643-54. PubMed ID: 19215108
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants.
    Klausen M; Heydorn A; Ragas P; Lambertsen L; Aaes-Jørgensen A; Molin S; Tolker-Nielsen T
    Mol Microbiol; 2003 Jun; 48(6):1511-24. PubMed ID: 12791135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of shear stress on growth, adhesion and biofilm formation of Pseudomonas aeruginosa with antibiotic-induced morphological changes.
    Fonseca AP; Sousa JC
    Int J Antimicrob Agents; 2007 Sep; 30(3):236-41. PubMed ID: 17574822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.