BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 30735297)

  • 1. Mercury removal from municipal secondary effluent with hydrous ferric oxide reactive filtration.
    Beutel MW; Dent SR; Newcombe RL; Möller G
    Water Environ Res; 2019 Feb; 91(2):132-143. PubMed ID: 30735297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphorus removal from municipal wastewater by hydrous ferric oxide reactive filtration and coupled chemically enhanced secondary treatment: part I--performance.
    Newcombe RL; Rule RA; Hart BK; Möller G
    Water Environ Res; 2008 Mar; 80(3):238-47. PubMed ID: 18419012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphorus removal from municipal wastewater by hydrous ferric oxide reactive filtration and coupled chemically enhanced secondary treatment: part II--mechanism.
    Newcombe RL; Strawn DG; Grant TM; Childers SE; Möller G
    Water Environ Res; 2008 Mar; 80(3):248-56. PubMed ID: 18419013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mercury (II) reduction and co-precipitation of metallic mercury on hydrous ferric oxide in contaminated groundwater.
    Richard JH; Bischoff C; Ahrens CGM; Biester H
    Sci Total Environ; 2016 Jan; 539():36-44. PubMed ID: 26352645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superconducting magnetic separation of phosphate using freshly formed hydrous ferric oxide sols.
    Li Y; Li Z; Xu F; Zhang W
    Environ Technol; 2017 Feb; 38(3):377-384. PubMed ID: 27241800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iron-ozone catalytic oxidation reactive filtration of municipal wastewater at field pilot and full-scale with high-efficiency pollutant removal and potential negative CO
    Baker MC; McCarthy D; Taslakyan L; Henchion G; Mannion R; Strawn DG; Möller G
    Water Environ Res; 2023 May; 95(5):e10876. PubMed ID: 37142261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous removal of As(V) and Cr(VI) from water by macroporous anion exchanger supported nanoscale hydrous ferric oxide composite.
    Hua M; Yang B; Shan C; Zhang W; He S; Lv L; Pan B
    Chemosphere; 2017 Mar; 171():126-133. PubMed ID: 28012384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High methylmercury production under ferruginous conditions in sediments impacted by sewage treatment plant discharges.
    Bravo AG; Bouchet S; Guédron S; Amouroux D; Dominik J; Zopfi J
    Water Res; 2015 Sep; 80():245-55. PubMed ID: 26005785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigating the Temporal Effects of Metal-Based Coagulants to Remove Mercury from Solution in the Presence of Dissolved Organic Matter.
    Henneberry Y; Kraus TE; Krabbenhoft DP; Horwath WR
    Environ Manage; 2016 Jan; 57(1):220-8. PubMed ID: 26330169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Total and methyl mercury transformations and mass loadings within a wastewater treatment plant and the impact of the effluent discharge to an alkaline hypereutrophic lake.
    Gbondo-Tugbawa SS; McAlear JA; Driscoll CT; Sharpe CW
    Water Res; 2010 May; 44(9):2863-75. PubMed ID: 20303566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of inorganic mercury and methylmercury from surface waters following coagulation of dissolved organic matter with metal-based salts.
    Henneberry YK; Kraus TE; Fleck JA; Krabbenhoft DP; Bachand PM; Horwath WR
    Sci Total Environ; 2011 Jan; 409(3):631-7. PubMed ID: 21075424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sugarcane bagasse treated with hydrous ferric oxide as a potential adsorbent for the removal of As(V) from aqueous solutions.
    Pehlivan E; Tran HT; Ouédraogo WK; Schmidt C; Zachmann D; Bahadir M
    Food Chem; 2013 May; 138(1):133-8. PubMed ID: 23265467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High removal efficacy of Hg(II) and MeHg(II) ions from aqueous solution by organoalkoxysilane-grafted lignocellulosic waste biomass.
    Saman N; Johari K; Song ST; Kong H; Cheu SC; Mat H
    Chemosphere; 2017 Mar; 171():19-30. PubMed ID: 28002763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficiency of industrial minerals on the removal of mercury species from liquid effluents.
    Melamed R; da Luz AB
    Sci Total Environ; 2006 Sep; 368(1):403-6. PubMed ID: 16274731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of solids residence time on dynamic responses in chemical P removal.
    Conidi D; Parker WJ; Smith S
    Water Environ Res; 2019 Mar; 91(3):250-258. PubMed ID: 30624834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance of biological activated carbon (BAC) filtration for the treatment of secondary effluent: A pilot-scale study.
    Ribeiro Dos Santos P; de Souza Leite L; Daniel LA
    J Environ Manage; 2022 Jan; 302(Pt A):114026. PubMed ID: 34731715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrous iron oxide modified diatomite as an active filtration medium for phosphate capture.
    Wang Z; Lin Y; Wu D; Kong H
    Chemosphere; 2016 Feb; 144():1290-8. PubMed ID: 26476050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochar integrated reactive filtration of wastewater for P removal and recovery, micropollutant catalytic oxidation, and negative CO
    Yu P; Baker MC; Crump AR; Vogler M; Strawn DG; Möller G
    Water Environ Res; 2023 Sep; 95(9):e10926. PubMed ID: 37696540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of solids residence time on phosphorus adsorption to hydrous ferric oxide floc.
    Conidi D; Parker WJ
    Water Res; 2015 Nov; 84():323-32. PubMed ID: 26265079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Achieving the Great Lakes Initiative mercury limits in oil refinery effluent.
    Urgun-Demirtas M; Gillenwater P; Negri MC; Lin Y; Snyder S; Doctor R; Pierce L; Alvarado J
    Water Environ Res; 2013 Jan; 85(1):77-86. PubMed ID: 23409456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.