These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 30735349)

  • 1. Remotely Controlled in Situ Growth of Silver Microwires Forming Bioelectronic Interfaces.
    Sanjuan-Alberte P; Saleh E; Shaw AJ; Lacalendola N; Willmott G; Vaithilingam J; Alexander MR; Hague RJM; Rawson FJ
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):8928-8936. PubMed ID: 30735349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fully Printed μ-Needle Electrode Array from Conductive Polymer Ink for Bioelectronic Applications.
    Zips S; Grob L; Rinklin P; Terkan K; Adly NY; Weiß LJK; Mayer D; Wolfrum B
    ACS Appl Mater Interfaces; 2019 Sep; 11(36):32778-32786. PubMed ID: 31424902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Versatile bioelectronic interfaces on flexible non-conductive substrates.
    Hassler BL; Amundsen TJ; Zeikus JG; Lee I; Worden RM
    Biosens Bioelectron; 2008 May; 23(10):1481-7. PubMed ID: 18313912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organic bioelectronics in medicine.
    Löffler S; Melican K; Nilsson KPR; Richter-Dahlfors A
    J Intern Med; 2017 Jul; 282(1):24-36. PubMed ID: 28181720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multifunctional Conductive Hydrogel Interface for Bioelectronic Recording and Stimulation.
    Tang H; Li Y; Liao S; Liu H; Qiao Y; Zhou J
    Adv Healthc Mater; 2024 May; ():e2400562. PubMed ID: 38773929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent advances in 2D bioelectronics.
    Osikoya AO; Tiwari A
    Biosens Bioelectron; 2017 Mar; 89(Pt 1):1-7. PubMed ID: 27771137
    [No Abstract]   [Full Text] [Related]  

  • 7. Bringing Electrochemical Three-Dimensional Printing to the Nanoscale.
    Hengsteler J; Mandal B; van Nisselroy C; Lau GPS; Schlotter T; Zambelli T; Momotenko D
    Nano Lett; 2021 Nov; 21(21):9093-9101. PubMed ID: 34699726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel 3D bioprinted flexible and biocompatible hydrogel bioelectronic platform.
    Agarwala S; Lee JM; Ng WL; Layani M; Yeong WY; Magdassi S
    Biosens Bioelectron; 2018 Apr; 102():365-371. PubMed ID: 29172145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conductive Materials with Elaborate Micro/Nanostructures for Bioelectronics.
    Guo J; Wang Y; Zhang H; Zhao Y
    Adv Mater; 2022 Jun; 34(23):e2110024. PubMed ID: 35081264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Speed 3D Printing of High-Performance Thermosetting Polymers via Two-Stage Curing.
    Kuang X; Zhao Z; Chen K; Fang D; Kang G; Qi HJ
    Macromol Rapid Commun; 2018 Apr; 39(7):e1700809. PubMed ID: 29383797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrically conducting polymers for bio-interfacing electronics: From neural and cardiac interfaces to bone and artificial tissue biomaterials.
    Lee S; Ozlu B; Eom T; Martin DC; Shim BS
    Biosens Bioelectron; 2020 Dec; 170():112620. PubMed ID: 33035903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D Printed Bionic Nanodevices.
    Kong YL; Gupta MK; Johnson BN; McAlpine MC
    Nano Today; 2016 Jun; 11(3):330-350. PubMed ID: 27617026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydroprinted Electronics: Ultrathin Stretchable Ag-In-Ga E-Skin for Bioelectronics and Human-Machine Interaction.
    Lopes PA; Paisana H; De Almeida AT; Majidi C; Tavakoli M
    ACS Appl Mater Interfaces; 2018 Nov; 10(45):38760-38768. PubMed ID: 30338978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA biosensing with 3D printing technology.
    Loo AH; Chua CK; Pumera M
    Analyst; 2017 Jan; 142(2):279-283. PubMed ID: 28001145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Versatile Design of Functional Organic-Inorganic 3D-Printed (Opto)Electronic Interfaces with Custom Catalytic Activity.
    Muñoz J; Redondo E; Pumera M
    Small; 2021 Oct; 17(41):e2103189. PubMed ID: 34510744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Renewable dehydrogenase-based interfaces for bioelectronic applications.
    Hassler BL; Kohli N; Zeikus JG; Lee I; Worden RM
    Langmuir; 2007 Jun; 23(13):7127-33. PubMed ID: 17503864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Living Synthelectronics: A New Era for Bioelectronics Powered by Synthetic Biology.
    Sun J; Yang R; Li Q; Zhu R; Jiang Y; Zang L; Zhang Z; Tong W; Zhao H; Li T; Li H; Qi D; Li G; Chen X; Dai Z; Liu Z
    Adv Mater; 2024 Jun; 36(25):e2400110. PubMed ID: 38494761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined Inkjet Printing and Infrared Sintering of Silver Nanoparticles using a Swathe-by-Swathe and Layer-by-Layer Approach for 3-Dimensional Structures.
    Vaithilingam J; Simonelli M; Saleh E; Senin N; Wildman RD; Hague RJ; Leach RK; Tuck CJ
    ACS Appl Mater Interfaces; 2017 Feb; 9(7):6560-6570. PubMed ID: 28094997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Biomimetic Conductive Tendril for Ultrastretchable and Integratable Electronics, Muscles, and Sensors.
    Cheng Y; Wang R; Chan KH; Lu X; Sun J; Ho GW
    ACS Nano; 2018 Apr; 12(4):3898-3907. PubMed ID: 29584398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional Printing of Silver Microarchitectures Using Newtonian Nanoparticle Inks.
    Lee S; Kim JH; Wajahat M; Jeong H; Chang WS; Cho SH; Kim JT; Seol SK
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):18918-18924. PubMed ID: 28541035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.