These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 30735959)
1. Monitoring Cr toxicity and remediation processes - combining a whole-cell bioreporter and Cr isotope techniques. Zhang Q; Song Y; Amor K; Huang WE; Porcelli D; Thompson I Water Res; 2019 Apr; 153():295-303. PubMed ID: 30735959 [TBL] [Abstract][Full Text] [Related]
2. Using stable isotope fractionation factors to identify Cr(VI) reduction pathways: Metal-mineral-microbe interactions. Zhang Q; Amor K; Galer SJG; Thompson I; Porcelli D Water Res; 2019 Mar; 151():98-109. PubMed ID: 30594094 [TBL] [Abstract][Full Text] [Related]
3. Chromium isotope fractionation during Cr(VI) reduction in a methane-based hollow-fiber membrane biofilm reactor. Lu YZ; Chen GJ; Bai YN; Fu L; Qin LP; Zeng RJ Water Res; 2018 Mar; 130():263-270. PubMed ID: 29241112 [TBL] [Abstract][Full Text] [Related]
4. Two-stage chromium isotope fractionation during microbial Cr(VI) reduction. Chen G; Han J; Mu Y; Yu H; Qin L Water Res; 2019 Jan; 148():10-18. PubMed ID: 30343194 [TBL] [Abstract][Full Text] [Related]
5. Use of a whole-cell bioreporter, Acinetobacter baylyi, to estimate the genotoxicity and bioavailability of chromium(VI)-contaminated soils. Jiang B; Zhu D; Song Y; Zhang D; Liu Z; Zhang X; Huang WE; Li G Biotechnol Lett; 2015 Feb; 37(2):343-8. PubMed ID: 25326171 [TBL] [Abstract][Full Text] [Related]
6. Isotope fractionation and spectroscopic analysis as an evidence of Cr(VI) reduction during biosorption. Šillerová H; Chrastný V; Čadková E; Komárek M Chemosphere; 2014 Jan; 95():402-7. PubMed ID: 24139156 [TBL] [Abstract][Full Text] [Related]
7. In situ bioremediation of hexavalent chromium in presence of iron by dried sludge bacteria exposed to high chromium concentration. Bansal N; Coetzee JJ; Chirwa EMN Ecotoxicol Environ Saf; 2019 May; 172():281-289. PubMed ID: 30716662 [TBL] [Abstract][Full Text] [Related]
8. Reactive transport modeling of chromium isotope fractionation during Cr(VI) reduction. Jamieson-Hanes JH; Amos RT; Blowes DW Environ Sci Technol; 2012 Dec; 46(24):13311-6. PubMed ID: 23153412 [TBL] [Abstract][Full Text] [Related]
9. Using chromium stable isotope ratios to quantify Cr(VI) reduction: lack of sorption effects. Ellis AS; Johnson TM; Bullen TD Environ Sci Technol; 2004 Jul; 38(13):3604-7. PubMed ID: 15296311 [TBL] [Abstract][Full Text] [Related]
10. Chromium isotopic fractionation during Cr(VI) reduction by Bacillus sp. under aerobic conditions. Xu F; Ma T; Zhou L; Hu Z; Shi L Chemosphere; 2015 Jul; 130():46-51. PubMed ID: 25777078 [TBL] [Abstract][Full Text] [Related]
11. Cr Isotopes and the Engineered Attenuation of Cr(VI)-Rich Runoff. Davidson AB; Holmden C; Nomosatryo S; Henny C; Francois R; Crowe SA Environ Sci Technol; 2021 Nov; 55(21):14938-14945. PubMed ID: 34669373 [TBL] [Abstract][Full Text] [Related]
12. Dual Mechanism Conceptual Model for Cr Isotope Fractionation during Reduction by Zerovalent Iron under Saturated Flow Conditions. Jamieson-Hanes JH; Amos RT; Blowes DW; Ptacek CJ Environ Sci Technol; 2015 May; 49(9):5467-75. PubMed ID: 25839086 [TBL] [Abstract][Full Text] [Related]
13. Determination of hexavalent chromium reduction using Cr stable isotopes: isotopic fractionation factors for permeable reactive barrier materials. Basu A; Johnson TM Environ Sci Technol; 2012 May; 46(10):5353-60. PubMed ID: 22424120 [TBL] [Abstract][Full Text] [Related]
14. Hexavalent chromium reduction by bacteria from tannery effluent. Batool R; Yrjala K; Hasnain S J Microbiol Biotechnol; 2012 Apr; 22(4):547-54. PubMed ID: 22534304 [TBL] [Abstract][Full Text] [Related]
15. Reduction remediation of hexavalent chromium by bacterial flora in Cr(VI) aqueous solution. Wang Q; Xu X; Zhao F; Liu Z; Xu J Water Sci Technol; 2010; 61(11):2889-96. PubMed ID: 20489262 [TBL] [Abstract][Full Text] [Related]
16. Hexavalent chromium reduction by Cellulomonas sp. strain ES6: the influence of carbon source, iron minerals, and electron shuttling compounds. Field EK; Gerlach R; Viamajala S; Jennings LK; Peyton BM; Apel WA Biodegradation; 2013 Jun; 24(3):437-50. PubMed ID: 23135488 [TBL] [Abstract][Full Text] [Related]
17. Chromium isotope fractionation during reduction of Cr(VI) under saturated flow conditions. Jamieson-Hanes JH; Gibson BD; Lindsay MB; Kim Y; Ptacek CJ; Blowes DW Environ Sci Technol; 2012 Jun; 46(12):6783-9. PubMed ID: 22676583 [TBL] [Abstract][Full Text] [Related]
18. Bioremediation of chromium solutions and chromium containing wastewaters. Malaviya P; Singh A Crit Rev Microbiol; 2016 Aug; 42(4):607-33. PubMed ID: 25358056 [TBL] [Abstract][Full Text] [Related]
19. Study on the oxidative stress and transcriptional level in Cr(VI) and Hg(II) reducing strain Acinetobacter indicus yy-1 isolated from chromium-contaminated soil. Hu L; Liu B; Li S; Zhong H; He Z Chemosphere; 2021 Apr; 269():128741. PubMed ID: 33127119 [TBL] [Abstract][Full Text] [Related]
20. Optimization of Culture Conditions for Growth Associated with Cr(VI) Removal by Wickerhamomyces anomalus M10. Fernández PM; Cruz EL; Viñarta SC; Castellanos de Figueroa LI Bull Environ Contam Toxicol; 2017 Mar; 98(3):400-406. PubMed ID: 27830289 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]