BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 30735990)

  • 41. On the relationship between microbubble fragmentation, deflation and broadband superharmonic signal production.
    Lindsey BD; Rojas JD; Dayton PA
    Ultrasound Med Biol; 2015 Jun; 41(6):1711-25. PubMed ID: 25766572
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Numerical modeling of microbubble backscatter to optimize ultrasound particle image velocimetry imaging: initial studies.
    Mukdadi OM; Kim HB; Hertzberg J; Shandas R
    Ultrasonics; 2004 Aug; 42(10):1111-21. PubMed ID: 15234173
    [TBL] [Abstract][Full Text] [Related]  

  • 43. High Frame Rate Contrast-Enhanced Ultrasound Imaging for Slow Lymphatic Flow: Influence of Ultrasound Pressure and Flow Rate on Bubble Disruption and Image Persistence.
    Zhu J; Lin S; Leow CH; Rowland EM; Riemer K; Harput S; Weinberg PD; Tang MX
    Ultrasound Med Biol; 2019 Sep; 45(9):2456-2470. PubMed ID: 31279503
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Resonance frequencies of lipid-shelled microbubbles in the regime of nonlinear oscillations.
    Doinikov AA; Haac JF; Dayton PA
    Ultrasonics; 2009 Feb; 49(2):263-8. PubMed ID: 18977009
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Using passive cavitation images to classify high-intensity focused ultrasound lesions.
    Haworth KJ; Salgaonkar VA; Corregan NM; Holland CK; Mast TD
    Ultrasound Med Biol; 2015 Sep; 41(9):2420-34. PubMed ID: 26051309
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Interaction of an ultrasound-activated contrast microbubble with a wall at arbitrary separation distances.
    Doinikov AA; Bouakaz A
    Phys Med Biol; 2015 Oct; 60(20):7909-25. PubMed ID: 26407104
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of ultrasound pulse parameters on cavitation properties of flowing microbubbles under physiologically relevant conditions.
    Cheng M; Li F; Han T; Yu ACH; Qin P
    Ultrason Sonochem; 2019 Apr; 52():512-521. PubMed ID: 30642801
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of bubble shell nonlinearity on ultrasound nonlinear propagation through microbubble populations.
    Tang MX; Loughran J; Stride E; Zhang D; Eckersley RJ
    J Acoust Soc Am; 2011 Mar; 129(3):EL76-82. PubMed ID: 21428471
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Quantitative Frequency-Domain Passive Cavitation Imaging.
    Haworth KJ; Bader KB; Rich KT; Holland CK; Mast TD
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Jan; 64(1):177-191. PubMed ID: 27992331
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fundamental study on subharmonic imaging by irradiation of amplitude-modulated ultrasound waves.
    Maikusa N; Fukami T; Yuasa T; Tamura Y; Akatsuka T
    J Acoust Soc Am; 2007 Jul; 122(1):672-6. PubMed ID: 17614523
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ultrasound-induced encapsulated microbubble phenomena.
    Postema M; van Wamel A; Lancée CT; de Jong N
    Ultrasound Med Biol; 2004 Jun; 30(6):827-40. PubMed ID: 15219962
    [TBL] [Abstract][Full Text] [Related]  

  • 52. High-Frequency Multipulse, Plane-Wave Acoustic Contrast Imaging.
    Ketterling JA; Silverman RH
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 May; 67(5):934-942. PubMed ID: 31841408
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Phase-dependent dual-frequency contrast imaging at sub-harmonic frequency.
    Shen CC; Cheng CH; Yeh CK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Feb; 58(2):379-88. PubMed ID: 21342823
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Italian Society of Cardiovascular Echography (SIEC) Consensus Conference on the state of the art of contrast echocardiography.
    Ital Heart J; 2004 Apr; 5(4):309-34. PubMed ID: 15185894
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Variations of bubble cavitation and temperature elevation during lesion formation by high-intensity focused ultrasound.
    Zhou Y; Gao XW
    J Acoust Soc Am; 2013 Aug; 134(2):1683-94. PubMed ID: 23927209
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Non-linear Acoustic Emissions from Therapeutically Driven Contrast Agent Microbubbles.
    Song JH; Moldovan A; Prentice P
    Ultrasound Med Biol; 2019 Aug; 45(8):2188-2204. PubMed ID: 31085030
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Low-amplitude non-linear volume vibrations of single microbubbles measured with an "acoustical camera".
    Renaud G; Bosch JG; Van Der Steen AF; De Jong N
    Ultrasound Med Biol; 2014 Jun; 40(6):1282-95. PubMed ID: 24613552
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A computational framework for the multiphysics simulation of microbubble-mediated sonothrombolysis using a forward-viewing intravascular transducer.
    Tan ZQ; Ooi EH; Chiew YS; Foo JJ; Ng EYK; Ooi ET
    Ultrasonics; 2023 May; 131():106961. PubMed ID: 36812819
    [TBL] [Abstract][Full Text] [Related]  

  • 59. High-speed observation of bubble cloud generation near a rigid wall by second-harmonic superimposed ultrasound.
    Yoshizawa S; Yasuda J; Umemura S
    J Acoust Soc Am; 2013 Aug; 134(2):1515-20. PubMed ID: 23927191
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Passive Acoustic Mapping for Convex Arrays With the Helical Wave Spectrum Method.
    Zhu H; Zeng Y; Cai X
    IEEE Trans Med Imaging; 2024 May; 43(5):1923-1933. PubMed ID: 38198274
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.