These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 30736029)

  • 1. Recovery of the Dirac states of graphene by intercalating two-dimensional traditional semiconductors.
    Gao Y; Zhang YY; Du S
    J Phys Condens Matter; 2019 May; 31(19):194001. PubMed ID: 30736029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth from behind: Intercalation-growth of two-dimensional FeO moiré structure underneath of metal-supported graphene.
    Dahal A; Batzill M
    Sci Rep; 2015 Jun; 5():11378. PubMed ID: 26074475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dirac cone in two dimensional bilayer graphene by intercalation with V, Nb, and Ta transition metals.
    Pakhira S; Lucht KP; Mendoza-Cortes JL
    J Chem Phys; 2018 Feb; 148(6):064707. PubMed ID: 29448784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sizable Band Gap in Epitaxial Bilayer Graphene Induced by Silicene Intercalation.
    Guo H; Zhang R; Li H; Wang X; Lu H; Qian K; Li G; Huang L; Lin X; Zhang YY; Ding H; Du S; Pantelides ST; Gao HJ
    Nano Lett; 2020 Apr; 20(4):2674-2680. PubMed ID: 32125162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatially controlled doping of two-dimensional SnS
    Gong Y; Yuan H; Wu CL; Tang P; Yang SZ; Yang A; Li G; Liu B; van de Groep J; Brongersma ML; Chisholm MF; Zhang SC; Zhou W; Cui Y
    Nat Nanotechnol; 2018 Apr; 13(4):294-299. PubMed ID: 29483599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction of 2D atomic crystals on transition metal surfaces: graphene, silicene, and hafnene.
    Pan Y; Zhang L; Huang L; Li L; Meng L; Gao M; Huan Q; Lin X; Wang Y; Du S; Freund HJ; Gao HJ
    Small; 2014 Jun; 10(11):2215-25. PubMed ID: 24687899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integration of graphene and two-dimensional ferroelectrics: properties and related functional devices.
    Jin X; Zhang YY; Pantelides ST; Du S
    Nanoscale Horiz; 2020 Sep; 5(9):1303-1308. PubMed ID: 32613986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-Dimensional Band Structure in Honeycomb Metal-Organic Frameworks.
    Kumar A; Banerjee K; Foster AS; Liljeroth P
    Nano Lett; 2018 Sep; 18(9):5596-5602. PubMed ID: 30134111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recovery and local-variation of Dirac cones in oxygen-intercalated graphene on Ru(0001) studied using scanning tunneling microscopy and spectroscopy.
    Jang WJ; Kim H; Jeon JH; Yoon JK; Kahng SJ
    Phys Chem Chem Phys; 2013 Oct; 15(38):16019-23. PubMed ID: 23958746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large area molybdenum disulphide- epitaxial graphene vertical Van der Waals heterostructures.
    Pierucci D; Henck H; Naylor CH; Sediri H; Lhuillier E; Balan A; Rault JE; Dappe YJ; Bertran F; Fèvre PL; Johnson ATC; Ouerghi A
    Sci Rep; 2016 Jun; 6():26656. PubMed ID: 27246929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quasi-freestanding graphene on Ni(111) by Cs intercalation.
    Alattas M; Schwingenschlögl U
    Sci Rep; 2016 May; 6():26753. PubMed ID: 27225324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intrinsically Honeycomb-Patterned Hydrogenated Graphene.
    Song Y; Qian K; Tao L; Wang Z; Guo H; Chen H; Zhang S; Zhang YY; Lin X; Pantelides ST; Du S; Gao HJ
    Small; 2022 Jan; 18(4):e2102687. PubMed ID: 34846103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxygen Intercalation of Graphene on Transition Metal Substrate: An Edge-Limited Mechanism.
    Ma L; Zeng XC; Wang J
    J Phys Chem Lett; 2015 Oct; 6(20):4099-105. PubMed ID: 26722784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dirac fermions in strongly bound graphene systems.
    Li Y; Chen P; Zhou G; Li J; Wu J; Gu BL; Zhang SB; Duan W
    Phys Rev Lett; 2012 Nov; 109(20):206802. PubMed ID: 23215516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Pb Intercalation on the Structural and Electronic Properties of Epitaxial Graphene on SiC.
    Yurtsever A; Onoda J; Iimori T; Niki K; Miyamachi T; Abe M; Mizuno S; Tanaka S; Komori F; Sugimoto Y
    Small; 2016 Aug; 12(29):3956-66. PubMed ID: 27295020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulating the Electronic Structure of Freestanding Graphene on SiC by Ge/Sn Intercalation: A Theoretical Study.
    Luo X; Liang G; Li Y; Yu F; Zhao X
    Molecules; 2022 Dec; 27(24):. PubMed ID: 36558135
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Traditional Semiconductors in the Two-Dimensional Limit.
    Lucking MC; Xie W; Choe DH; West D; Lu TM; Zhang SB
    Phys Rev Lett; 2018 Feb; 120(8):086101. PubMed ID: 29543005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface Transport Properties of Pb-Intercalated Graphene.
    Gruschwitz M; Ghosal C; Shen TH; Wolff S; Seyller T; Tegenkamp C
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Remote epitaxy through graphene enables two-dimensional material-based layer transfer.
    Kim Y; Cruz SS; Lee K; Alawode BO; Choi C; Song Y; Johnson JM; Heidelberger C; Kong W; Choi S; Qiao K; Almansouri I; Fitzgerald EA; Kong J; Kolpak AM; Hwang J; Kim J
    Nature; 2017 Apr; 544(7650):340-343. PubMed ID: 28426001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxygen switching of the epitaxial graphene-metal interaction.
    Larciprete R; Ulstrup S; Lacovig P; Dalmiglio M; Bianchi M; Mazzola F; Hornekær L; Orlando F; Baraldi A; Hofmann P; Lizzit S
    ACS Nano; 2012 Nov; 6(11):9551-8. PubMed ID: 23051045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.