These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 30736752)

  • 1. Analyzing a co-occurrence gene-interaction network to identify disease-gene association.
    Al-Aamri A; Taha K; Al-Hammadi Y; Maalouf M; Homouz D
    BMC Bioinformatics; 2019 Feb; 20(1):70. PubMed ID: 30736752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying disease-gene associations using a convolutional neural network-based model by embedding a biological knowledge graph with entity descriptions.
    Choi W; Lee H
    PLoS One; 2021; 16(10):e0258626. PubMed ID: 34653225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifying gene-disease associations using centrality on a literature mined gene-interaction network.
    Ozgür A; Vu T; Erkan G; Radev DR
    Bioinformatics; 2008 Jul; 24(13):i277-85. PubMed ID: 18586725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ontology-based literature mining of E. coli vaccine-associated gene interaction networks.
    Hur J; Özgür A; He Y
    J Biomed Semantics; 2017 Mar; 8(1):12. PubMed ID: 28288685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A network approach to prioritizing susceptibility genes for genome-wide association studies.
    Kafaie S; Chen Y; Hu T
    Genet Epidemiol; 2019 Jul; 43(5):477-491. PubMed ID: 30859622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graph-theoretical comparison of normal and tumor networks in identifying BRCA genes.
    Dopazo J; Erten C
    BMC Syst Biol; 2017 Nov; 11(1):110. PubMed ID: 29166896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Constructing Genetic Networks using Biomedical Literature and Rare Event Classification.
    Al-Aamri A; Taha K; Al-Hammadi Y; Maalouf M; Homouz D
    Sci Rep; 2017 Nov; 7(1):15784. PubMed ID: 29150626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction and analysis of protein-protein interaction networks based on proteomics data of prostate cancer.
    Chen C; Shen H; Zhang LG; Liu J; Cao XG; Yao AL; Kang SS; Gao WX; Han H; Cao FH; Li ZG
    Int J Mol Med; 2016 Jun; 37(6):1576-86. PubMed ID: 27121963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel topological centrality measure capturing biologically important proteins.
    Karabekmez ME; Kirdar B
    Mol Biosyst; 2016 Feb; 12(2):666-73. PubMed ID: 26699451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prioritizing candidate disease-related long non-coding RNAs by walking on the heterogeneous lncRNA and disease network.
    Zhou M; Wang X; Li J; Hao D; Wang Z; Shi H; Han L; Zhou H; Sun J
    Mol Biosyst; 2015 Mar; 11(3):760-9. PubMed ID: 25502053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. IMA: Identifying disease-related genes using MeSH terms and association rules.
    Kim J; Bang C; Hwang H; Kim D; Park C; Park S
    J Biomed Inform; 2017 Dec; 76():110-123. PubMed ID: 29155333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel candidate disease genes prioritization method based on module partition and rank fusion.
    Chen X; Yan GY; Liao XP
    OMICS; 2010 Aug; 14(4):337-56. PubMed ID: 20726795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Network-based prediction and knowledge mining of disease genes.
    Carson MB; Lu H
    BMC Med Genomics; 2015; 8 Suppl 2(Suppl 2):S9. PubMed ID: 26043920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene gravity-like algorithm for disease gene prediction based on phenotype-specific network.
    Lin L; Yang T; Fang L; Yang J; Yang F; Zhao J
    BMC Syst Biol; 2017 Dec; 11(1):121. PubMed ID: 29212543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DiffSLC: A graph centrality method to detect essential proteins of a protein-protein interaction network.
    Mistry D; Wise RP; Dickerson JA
    PLoS One; 2017; 12(11):e0187091. PubMed ID: 29121073
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene co-opening network deciphers gene functional relationships.
    Li W; Wang M; Sun J; Wang Y; Jiang R
    Mol Biosyst; 2017 Oct; 13(11):2428-2439. PubMed ID: 28976510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene2DisCo: Gene to disease using disease commonalities.
    Frasca M
    Artif Intell Med; 2017 Oct; 82():34-46. PubMed ID: 28882544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Network topology measures for identifying disease-gene association in breast cancer.
    Ramadan E; Alinsaif S; Hassan MR
    BMC Bioinformatics; 2016 Jul; 17 Suppl 7(Suppl 7):274. PubMed ID: 27454166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Text mining and network analysis to find functional associations of genes in high altitude diseases.
    Bhasuran B; Subramanian D; Natarajan J
    Comput Biol Chem; 2018 Aug; 75():101-110. PubMed ID: 29763853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discovering implicit entity relation with the gene-citation-gene network.
    Song M; Han NG; Kim YH; Ding Y; Chambers T
    PLoS One; 2013; 8(12):e84639. PubMed ID: 24358368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.