These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 30736766)
1. Large-scale production of tauroursodeoxycholic acid products through fermentation optimization of engineered Escherichia coli cell factory. Xu Y; Yang L; Zhao S; Wang Z Microb Cell Fact; 2019 Feb; 18(1):34. PubMed ID: 30736766 [TBL] [Abstract][Full Text] [Related]
2. Rapidly directional biotransformation of tauroursodeoxycholic acid through engineered Escherichia coli. Shi J; Wang J; Yu L; Yang L; Zhao S; Wang Z J Ind Microbiol Biotechnol; 2017 Jul; 44(7):1073-1082. PubMed ID: 28332050 [TBL] [Abstract][Full Text] [Related]
3. A green strategy to produce potential substitute resource for bear bile using engineered Saccharomyces cerevisiae. Jin L; Yang L; Zhao S; Wang Z Bioresour Bioprocess; 2022 Mar; 9(1):32. PubMed ID: 38647767 [TBL] [Abstract][Full Text] [Related]
4. A validated surrogate analyte UPLC-MS/MS assay for quantitation of TUDCA, TCDCA, UDCA and CDCA in rat plasma: Application in a pharmacokinetic study of cultured bear bile powder. Zan B; Liu X; Zhao Y; Shi R; Sun X; Wang T; Li Y; Liu S; Yang L; Ma Y Biomed Chromatogr; 2020 Jul; 34(7):e4835. PubMed ID: 32198899 [TBL] [Abstract][Full Text] [Related]
5. Chromosome engineering of Escherichia coli for constitutive production of salvianic acid A. Zhou L; Ding Q; Jiang GZ; Liu ZN; Wang HY; Zhao GR Microb Cell Fact; 2017 May; 16(1):84. PubMed ID: 28511681 [TBL] [Abstract][Full Text] [Related]
6. Study of two-stage processes for the microbial production of 1,3-propanediol from glucose. Hartlep M; Hussmann W; Prayitno N; Meynial-Salles I; Zeng AP Appl Microbiol Biotechnol; 2002 Oct; 60(1-2):60-6. PubMed ID: 12382042 [TBL] [Abstract][Full Text] [Related]
7. Co-immobilised 7α- and 7β-HSDH as recyclable biocatalyst: high-performance production of TUDCA from waste chicken bile. Ji Q; Wang B; Li C; Hao J; Feng W RSC Adv; 2018 Oct; 8(60):34192-34201. PubMed ID: 35548603 [TBL] [Abstract][Full Text] [Related]
8. Investigation of fermentation conditions of biodiesel by-products for high production of β-farnesene by an engineered Escherichia coli. Yao P; You S; Qi W; Su R; He Z Environ Sci Pollut Res Int; 2020 Jun; 27(18):22758-22769. PubMed ID: 32323229 [TBL] [Abstract][Full Text] [Related]
9. Increasement of O-acetylhomoserine production in Escherichia coli by modification of glycerol-oxidative pathway coupled with optimization of fermentation. Liu P; Liu JS; Zhang B; Liu ZQ; Zheng YG Biotechnol Lett; 2021 Jan; 43(1):105-117. PubMed ID: 33083859 [TBL] [Abstract][Full Text] [Related]
10. Enhanced succinate production from glycerol by engineered Escherichia coli strains. Li Q; Wu H; Li Z; Ye Q Bioresour Technol; 2016 Oct; 218():217-23. PubMed ID: 27371794 [TBL] [Abstract][Full Text] [Related]
11. Optimization of fermentation conditions for the production of curcumin by engineered Couto MR; Rodrigues JL; Rodrigues LR J R Soc Interface; 2017 Aug; 14(133):. PubMed ID: 28835544 [TBL] [Abstract][Full Text] [Related]
12. Optimization of high cell density fermentation process for recombinant nitrilase production in E. coli. Sohoni SV; Nelapati D; Sathe S; Javadekar-Subhedar V; Gaikaiwari RP; Wangikar PP Bioresour Technol; 2015; 188():202-8. PubMed ID: 25739996 [TBL] [Abstract][Full Text] [Related]
13. Application of the BPEC pathway for large-scale biotechnological production of poly(3-mercaptopropionate) by recombinant Escherichia coli, including a novel in situ isolation method. Thakor N; Lütke-Eversloh T; Steinbüchel A Appl Environ Microbiol; 2005 Feb; 71(2):835-41. PubMed ID: 15691938 [TBL] [Abstract][Full Text] [Related]
14. Construction of a novel anaerobic pathway in Escherichia coli for propionate production. Li J; Zhu X; Chen J; Zhao D; Zhang X; Bi C BMC Biotechnol; 2017 Apr; 17(1):38. PubMed ID: 28407739 [TBL] [Abstract][Full Text] [Related]
15. Metabolic Pathway Construction and Optimization of Escherichia coli for High-Level Ectoine Production. Chen J; Liu P; Chu X; Chen J; Zhang H; Rowley DC; Wang H Curr Microbiol; 2020 Aug; 77(8):1412-1418. PubMed ID: 32189048 [TBL] [Abstract][Full Text] [Related]
16. Analysis of the production process of optically pure D-lactic acid from raw glycerol using engineered Escherichia coli strains. Posada JA; Cardona CA; Gonzalez R Appl Biochem Biotechnol; 2012 Feb; 166(3):680-99. PubMed ID: 22127808 [TBL] [Abstract][Full Text] [Related]
17. Metabolic engineering of Escherichia coli for the production of phenol from glucose. Kim B; Park H; Na D; Lee SY Biotechnol J; 2014 May; 9(5):621-9. PubMed ID: 24115680 [TBL] [Abstract][Full Text] [Related]
18. Systematic Engineering of Escherichia coli for d-Lactate Production from Crude Glycerol. Wang ZW; Saini M; Lin LJ; Chiang CJ; Chao YP J Agric Food Chem; 2015 Nov; 63(43):9583-9. PubMed ID: 26477354 [TBL] [Abstract][Full Text] [Related]
19. Improved glycerol to ethanol conversion by E. coli using a metagenomic fragment isolated from an anaerobic reactor. Loaces I; Rodríguez C; Amarelle V; Fabiano E; Noya F J Ind Microbiol Biotechnol; 2016 Oct; 43(10):1405-16. PubMed ID: 27522660 [TBL] [Abstract][Full Text] [Related]
20. [Construction and optimization of microbial cell factories for producing cis, cis-muconic acid]. Song G; Jiang X; Chen W; Peng Y; Lu F; Wang Q Sheng Wu Gong Cheng Xue Bao; 2016 Sep; 32(9):1212-1223. PubMed ID: 29022322 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]